
The LOGO Turtle-maze

Robert H. Seidman 
Bionics Research laboratory*

University of Edinburgh 
Forrest Hill 

Edinburgh EH1 2QL 

*After Sept, .1 972:

Systems and Information Science, 
313 Link Hall, 
Syracuse University, 
Syracuse, New york 13210,
U.S.A. 



August, 1972. 

Dear Reader, 

Members of the LOGO Project at Syracuse University have 

been teaching LOGO programming and turtle geometry for almost 

one year to elementary school children (ages 7-12) and are 

involved in a variety of research. My concern has been the 

growth of logical thinking and problem solving abilities 

in young children particularly in the transi tion period 

between what Piaget calls the stages of concrete operations 

(7-11) and formal operations (11-adolescence). 

I have developed an investigative tool which hopefully 

will provide a rich experimental environment ( for both user 

and experimenter) and whose use may shed some light on 

various aspects of logical thinking and problem solving. 

This tool together with various experiments forms a major 

portion of my Ph.D. research. 

A series of four papers currently in various stages of 

development serve as a basis for this research

A. Computer Aided Education: LOGO and the Education Milieu

The LOGO System is described and placed in what we feel 

is its proper perspective. The field is divided into three 

categories: direct instruction, games and simulation, and 

use as a computational device. 

The LOGO System falls into the latter category but 

encompasses parts of the others as well.* We may think of 

the LOGO System as an experimental computation laboratory 

closely akin to experimental-laboratory simulation systems 

but with a difference of paramount importance: the LOGO 

System is in its fullest generality a meta-experimental-
No textlaboratory simulator. 

This is in direct contrast to an attitude expressed in a 
needlessly argumentative paper (see Seidman, R.H.:
"Computer-Aided-Instruction"; Syracuse University/ 
Computer Aided Learning Laboratory Report No. 1 :
January 1972; Syracuse, New York). 
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We make no attempt at an in-depth survey of the entire 

field of computers in education. This has already been 

adequately done by others. Rather, a broad historical overview 

of the development of the three categories is presented from 

the following four perspectives. 

The degree of user-system control over 
• interaction. 

The range and flexibility of user-system .. 
response. 

The system's model of the user and the 

. user's knowledge (or model) of the workings 

of the system. 

.. The measures used to evaluate performance 

and achievment.

Unlike most direct instructional systems (e.g. traditional 

computer-aided-instruction) the LOGO System presupposes no

particular model of learning and instruction. It is a 

convenient tool for theoretical and practical exploration and 

provides a broad and flexible experimental environment for 

both user and experimenter. 

B. The LOGO Turtle-maze 

We hope to gain insights into the development of logical 

thinking through experiments dealing with turtle-maze problem 

solving .

The experimenter or user creates a maze (a graph 
No text

structure) and the user writes LOGO procedures which cause 

the turtle to traverse the maze. The range of possible 

experiments is large, and general and specific problem 

solving principles can be developed and studied. The LOGO 

turtle-maze will be in operation by December 31st, 1972. 
No text
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C. Logical Thinking and Problem Solving - Piaget's Theory 

Our theoretical orientation is derived from the work of 

Jean Piaget and since LOGO is not tied to any one cognitive

theory we have chosen this one as the basis for our investigations. 

Other researchers may wish to 'use the LOGO turtle-maze tool to 

investigate other theories. 

Piaget's theory of cognitive deveiopment and logical 

thinking is presented and focused on areas pertinent to our 

research. The specific research areas are described and we 

show how turtle-maze problem solving may shed light on certain 

aspects of logical thinking. Our hypotheses are developed.. 

D. Experimental Design

No textThe various turtle-maze experiments are described. 

A, C and Dare in various stages of thinking and 

writing while Bis complete (attached) and awaits implementation. 

A tentative dissertation outline follows. 

Children, Computers a and CognitiveDevelopment investigations
of logical thinking and problem solving in young.. g children

Part II.

Part III. 

Part IV. 

Part V. 

Part VI. 

Computer Aided Education: LOGO and the Education Milieu 

The LOGO Tu~tle-maze 

Logical Thinking and Problem Solving - Piaget's Theory 

Experimental Design 

Experimental Results 

Conclusions 



The LOGO Turtle-maze 

I. Introduction 

LOGO is a fully recursive LISP-lilce language (developed at 

M.I.T. and Bolt Beraneck and Newman) used in conjunction with a 

time-sharing digital computer via teletypewriters. The language 

through the computer drives various peripheral devices and 

together make up the LOGO System. LOGO has a simple English­

like syntax and researchers at 11.I.T., Syracuse University and 

elsewhere use it to teach young children (ages 7-12) computer 

programming. 

A major peripheral in the LOGO System is an electromechanical 

device called a turtle. The user can dtrect the turtle to move 

forward and backwards a specified number of turtle-steps, rotate 

clockwise or counterclockwise a specified number of degrees, and 

toot a high horn, low horn or ring a bell a specified number of

times. 

In addition, the user can direct a pen to drop or rise from 

the turtle's mid-center thus enabling the device to leave a 

turtle-trace. 

The electromechanical turtle has a graphical counterpart 

represented by an arrow on a CRT screen and is capable of leaving 

a turtle-trace for a period of time specified by the user. 

Proc: 1 is a LOGO procedure (program) for a turtle-drawing 

of an expandable diamond. 
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> TO DIAMOND :X :Y 

> 10 PD 

> 20 FD :X 

> 30 RT 120 

> 40 FD :X 

> 50 PU 

> 60 :Y<-(:Y-1)

> 70 IF : Y=0 STOP 

> 80 RT 120 

> 90 DIAMOND : X : Y 

> 100 STOP 

·> END 

- 2 -

[procedure name, side length 
input recursion control index 
input *

[pen down, see Fig. 1] 

[forward side length, Fig. 2] 

[rotate clockwise 120°, Fig. 3] 
[Fig. 4] 
[pen up] 

[decrement recursion control 
index by one] 

[if recursion control index= O, 
STOP, otherwise line 80] 

[Fig. 5] 
[recursive call to DIAMOND with 

new value for recursion control 
index, 'Figs. 6-8] 

Procedure 1 Expandable Diamond 

Proc, 1 is executed with inputs :X:20 (turtle-steps) and 

Varying the value of :X varies the size of the diamond. 

> DIAMOND 20 2 [ execute DIAMOND

Bracketed sentences are explanatory text notes. 



- 3 -

Figs. 1-8 illustrate the turtle's actions. 

Fig. 1 initial 
turtle position. 

Fig. 4 Turtle 
moves 20 steps.

Fig. 6 Turtle 
moves 20 steps. 

Fig. 2 Turtle
moves 20 steps

/ 

I 
Fig. 3 Turtle 
rotates120°. 

Fig. 5 Turtle rotates 120°. 

Fiig. 7 Turtle 
rotates 120 deg.

Fig. 8Turtle 
moves 20 steps. 

The user has the freedom to correspond spatial distances 

with turtle-steps. 

> STEPSIZE [1 inch=1 turtle-step] 

With the above setting the electromechanical turtle will 

draw a diamond with cross diagonals of 34.6 and 20 incl1es. 

Seymour Papert, one of the system's creators, foresees the 

placement of touch sensors on the front, sides and rear of the 

turtle as well as a light source and sensor thus providing the 

system and user with real-time environmental feedback. 

We propose an alternative to this scheme which provides at once 

a flexible and extremely rich real-time environmental feedback interface. 
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Figs. 10-16 show the development of the software model for 

MAZE1. The system now has an internal model of the maze and 

needs only to know the turtle-step spatial correspondence, start 

point and orientation, and goal point(s) for total information. 

Mazes, like procedures, can be stored, called and. copied. 

The maze may be chalked or laid out using tape on the floor or
turtle surface. 

> STEPSIZE MAZE1 [ 1 inch = 1 turtle-step for MAZE1]

With the above information the software model for MAZE1 is 

now represented by Fig. 17 .

N2 

240

N1

48 N5 

No text l 
186 180 86

No text
No text

77 N3
.. No text60

No text N4
48 

Fig. 17 Software maze model for MAZE1
represent turtle-steps. 

Numbers 

The following command causes the software model of MAZE1

to be printed in table form (Fig. 18). 

> DISPLAY MAZE1 

111.Til ANGLE DISTANCE (STEPS} 

N1->N2 0 240 

N1->N3 45 77 
N1->N4 90 48 

N2->N5 90 48 

N2->N3 140 186 

N3->N5 0 180 

N3->N4 180 60 ONEWA Y IN N3->N4 DIRECTION

Fig. 18 Table for software representation of MAZE1.
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We wish to write procedures (Procs, 3,4) to cause the 

turtle to search MAZE1 for a goal. The turtle may start at 

any node with any heading and we may designate any node as the 

goal-node. Another possible version would 'allow the turtle to 

start at any point on any path in the maze. The goal may be 

similarly placed. 

> TO SEARCH1 

> 10 FD 480 

> 20 RT 45 

> 30 BK 720 

> 40 STOP 

> 50 PI: INTER1 

> 60 GOAL: STOP 

> END

[local nonexecutable instruction, 

designates procedure to be called 

when turtle goes off-course] 

[local nonexecutable instruction; 

when goal is found STOP (a procedure 

name could replace STOP causing 

control to be transferred when goal 

is found)]

Procedure_3 Main search procedure with program interrupt (PI) .. 

> TO INTER1 

> 10 RT 1 

> 20 IF BLOCK INTER 1 [if truth value of BLOCK is still 

TRUE (means turtle is off-course) 

recursively call INTER1, otherwise 

line 30] 

> 30 SEARCH1 COMPLETE [return to SEARCH1 and try to complete 

the instruction interrupted by the BLOCK] 

> 40 STOP 

> END

Procedure 4 The interrupt procedure designated in SEARCH1. 

The following instructions provide the system with total 

maze information. 

> INITIALIZE MAZE1

* START : N1 0 

* GOAL: N3 

[ turtle starts at N1heading o0 ] 

[goal at N3]
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The turtle is placed at N1 on the turtle surface headed 

o0 (Fig. 18) and procedure SEARCH1 is executed. 

> SEARCH1 

The turtle moves to N2 and halts (Fig. 19) .

Fig. 18 Initial 
turtle position 

N"2 ^ *

I 
|
|
I 

Fig . 19 Turtle halts at N2. 
* signifies BLOCK set at TRUE.

Before instruction 10 in Proc. 3 is executed. the projected 

resulting action is compared against the N1->N2 path length in 

the software model. It is noted that execution of this instruction 

would cause the turtle to overshoot N2. The turtle is allowed to 

proceed to N2 where it is ha1ted and TRUE assigned to BLOCK. This 

situation is analogous to a sensor being triggered on the turtle. 

A main procedure interrupt occurs at line 10 and control is transferred 

to the designated interrupt procedure. INTER1.

INTER1 is executed recursively ninety times causing the turtle 

to turn right 90° thus changing the value ;of BLOCK to FALSE (Fig. 20). 

N2 - >

N1 

Fig. 20 Turtle at N2 headed 90° 
with BLOCK=FALSE. 
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With the BLOCK condition now satisfied line 30 in INTER1 

causes control to revert to SEARCH1. 

The LOGO control-keyword COMPLETE causes the attempted 

completion of the interrupted instruction in SEARCH1 (line 10). 

Recall that the turtle has already successfully moved forward 240 

steps. Therefore, the pseudo-instruction now attempting execution 

at line 10 is 'FD 240'. 

If CONTINUE had been the control-keyword control would have 

passed to line 20 in SEARCH1. In the absence of any control-keyword 

a new call to SEARCH1 would have been initiated. 

Pseudo-instruction 'FD 240' is now executed and Figs.21-23 

illustrate the resulting actions. 

* 
N2 --------------------->N5 

|

I 

I 
|
|

N1.
Fig. 21 Turtle is halted at N5
and control reverts to INTERN1.

Fig, 22 Turtle rotates to a 
position of 180° causing 
BLOCK=FALSE and reverting 
control to SEARCH1. 

N2 ________________________N5 

N1 

Fig, 23 Turtle moves to N3
** signifies goal attained. 
SEA.RCH1 terminates on line 
60 which halts the turtle. 
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What actions would result if paths N2->N5 and N1->N4 were 

6 feet (72 steps) instead of 4 given the same starting and goal 

conditions? 

Figs. 18-22 would remain the same but Figs. 24-26 would 

replace Fig. 23. 

The control-keyword COMPLETE in line 30 of INTER1 causes 

the instruction of line 10 of SEARCH1 to be completed leaving 

the turtle 12 steps (one foot) short of the goal at N3. As a 

result line 20 in SEARCH1 is executed causing the turtle to turn 

45° clockwise giving it a heading of 225 °. The instruction 

in line 30 of SEARCH1 causes the turtle to attempt to back up 720 

steps which precipitates an interrupt causing a halt and BLOCK=TRUE 
(Fig. 24). 

72 
N2 ------------------------

*

. N3 

N1

Fig, 24 Turtle is halted 12 steps short 
of goal at N3 headed 225 deg. 

Control transfers to INTER1 which calls itself recursively 

135 times resultting in Fig . 25 and BLOCK = FALSE.

N2 72 N5

Fig. 25 Turtle heading 0° with BLOCK=FALSE. 
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Control reverts to the suspended instruction on line 30 in 

SEARCH1 whose pseudo-instruction is identical to its real instruction. 

Execution results in goal attainment in 12 turtle-steps (Fig. 26). 

N2 72 N N5 

N1 

Fig. 26Goal attained in line 30 of SEARCH1 
Note the difference between the terminal heading 
in this figure and Fig. 23. 

B. After creating a maze we may wish to alter it by adding, 

deleting and changing the directed nature of paths (Proc. 5, Fig. 27). 

> ALTER MAZE1 

* DEL N2->N3 

* ADD N3 90 20 ONEWAY-N3->N6

* DIR N3->N1 ONEWAY FIN SUP 

* MAZE1 ALTERED 

[calls ALTER program and applies 

it to MAZE1 ] 

[delete path N2->N3]

[path is added] 

[ make N3->N1 one-way] J 

procedure 5 A path in MAZE1 is deleted, one is added and 
one has its directed nature changed. The new maze confirmation 
print-out has been SUPpressed. 

N2 ----------------------------------N5

Fig, 27 New software model of MAZE1 • A one-way 
path N3->N6 of length 240 turtle-steps and heading 90° 
has been added. N2->N3has been deleted and N1->N3 is 
now one-way in the N3->N1 direction. 
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N2 --------------------N5 

N5 is blocked in the N2->N5 direction signified by 
and N4 is blocked in the N4->N1 direction by <-
signifies a bi-directional block (barrier).' 

We may wish to place a barrier on a path (Proc. 8, Fig. 30). 

> NCGO MAZE1

* N1->N7 N7 
* N2->N7 N7} or * BARR N7 

* FIN SUP 

* NOGO MAZE1 COMPLETED

Procedure 8 Barrier placed at N7 

N2 ----------------N5

<-|
Figure 30 Barrier placed at N7. Equivalently: block 
at N1 in the N1 -->N7 direction and. a block at n2 in the 
N2->N7 direction. 
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So far our alternative software turtle-maze poses few 

advantages over real world sensor devices. Notably one is the 

system's ability to keep records of the various mazes, procedures 

and paths traversed.. The restriction of the turtle to established 

paths is a drawback but this is overcome in a later section. 

We may of course have quite complicated mazes with multiple 

goals perhaps having some sort of priority ordering. But the 

environmental feedback and turtle responses are essentially the 

same in the software maze scheme as in the physical sensor scheme. 

The first major advantages of our scheme can be seen in its 

facility for decision-point traversals. 
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III. _llitcision-point Traversal ~,raze 

A. We may consider each node of the maze a decision-point. 

Instead of traversing the maze by successive turtle-steps the 

addition of four new instructions allows n;he turtle to move 

directly from node to node. 

Procedure 4 applied to the graph represented by Fig. 31 

would cause threa nodes and four paths (including the path 

containing the goal) to be by-passed during the execution of 

the first instruction alone. 
N10

80 • 

70 100
N9 N6 80 

N5 

N7 

N3 

Fig.. 31 MAZE2 The turtle starts at N1 headed o0 • 

is at N5 and the distance N1->N10 is 480 steps .
The goal 

The addition of the following four turtle instructions (Proc. 9) to the 

instruction repertoire increases environmental feedback information. 

FD DN 

BK DN 

RT DN 

LT DN

[forward to the next decision node] 

[backwards to the next decision node] 

[turn right until headed toward the 

next decision node] 

[turn left until headed toward the 

next decision node] 
No text

Procedure 9 Decision-point turtle instructions. 
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We provide the software model with total information and 

then execute the main procedure. 

> INITIALIZE MAZE2

* START : N1 0 

* GOAL: N5 

> TRAVERSE [ execute main procedure] 

N2 

N1 

Fig. 32 Turtle 
travels to N2.

N2

Fig. 35 Control passes 
to line 40 in INTER2 and 
turtle turns right to 
N2->N3. Control is 
passed back to TRAVERSE. 

N2 

N1

Fig. 33 Turtle turns 
right to .path N2->N4. 

N2 

N1 

Fig, 36 

N3

* N2 >

N1

Fig. 34 Turtle 
blocked by one-way 
path. BLOCK=ONEWAY 
and control passes 
to INTER2. 

N2

N1 

Fig. 37 

N3 
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N3 ** 
N5 

N2 N2 

N1
N1 

Fig. 38 Fig. 39 Turtle 
turns right to 
N2->N5

Fig. 40 Goal 
found. 

The use of decision-point turtle instructions increases the 

turtle's sensitivity to its environment thus giving the user an 

additional margin of freedom. The turtle may be thought of as 

possessing path-sensitive eyes. 

We may mix decision and non-decision-point turtle 

instructions. 

B. We could allow the turtle an additional freedom at 

decision-point nodes by providing it with a list of path 

possibilities. 

For example, when the turtle arrives at N2 (Fig. 32) the 

LOGO key-list VECTOR could be consulted. 

VECTOR: ( N4<-45 N3<-80 No textNo textN1<->180N5<->240 ) 

where <- signifies one--way in the N4->N2 direction 

and No text<->signifies two-way. 

Additional instructions could be provided for choice and 

action. 
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IV • .Q.rutlinuous Path-feedback and Correction 

In II and III (mixed mode) interrupts occur when the 

turtle strays from its path. 

We allow path deviations by permitting user-set limits on 

and remedies for these deviations. 

The user may set LOGO key-words PATHSTRAY, ANGLESTRAY and 

DISTANCESTRAY which cause procedure interrupts resulting in 

transfer of control to user created analyzer and corrective 

procedures. 

For experimental reasons deviations may be introduced at 

various path regions by the experimenter. 

With this feature,fixed turtle-paths, are no longer 

restrictions on movement. In the extreme case (no STRAY-interrupts) 

the maze is a collection of unconnected nodes. These nodes 

represent obstacles (barriers) in the turtle's world. 
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v. Path Recognition 

Consider the maze shown in Fig. 40 and Procedure 12. 

N3

Fig, 40 MAZE3.

> TO LOOP 

> 10 RT DN
> 20 FD DN 

> 30 LOOP 

> 40 STOP 

> 50 IP: INTER2 

> 60 GOAL: STOP 

> END 

N4

Goal at N3 and turtle starts at N1. 

[Proc . 11 J 

Procedure 12 Procedure to search MAZE3 for goal. 

We provide the software model of MAZE3 with total 

information and execute the main procedure.

> INITIALIZE MAZE3

* START: N1 

* GOAL: N3 

> LOOP 

[no specific direction] 

' 
[ execute LOOP J 
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Procedure execution places the turtle into an endless 

loop: N2->N4->N5->N2->•••• 

We may avoid such a catastrophy by providing the turtle 

with a path memory. In effect, the turtle would have the ability 

to mark each path traversed and to recognize such marks. 

A LOGO key-list containing all paths previously traversed 

(and frequency) by the turtle in chronological order is provided. 

A LOGO key-word contains the name of the pnth about to be traversed

Key-list irnd key-word are M[]MPATHand CURPATH, respectively and can 

be acce0sed at any place in a procedure.

The following four instructions augment the repertoire of 
turtle instructions. 

RT DNM 

LF DNM

FD DNM

BK DNM

[after execution, control transfers 
to designated MEMORY-Interrupt procedure] 

[same as RT DNM]
[before execution, control transfers to 

designated MEMORY-Interrupt procedure] 

[same as FD DNM]

The designated MEMORY-Interrupt procedure would interogate

MEMPATH, determine which path to pursue and appropriately transfer 

control to the main procedure or to some part of itself. 

We may wish to provide a LOGO key-word, say PATH, which 

would be automatically set to a truth value depending on whether 

or not the current proposed path has been travelled previously. 

Procedures 33 and 14 search MAZE 3. 

> TO RECOGNIZE 

> 10 RT DNM 

> 20 FD DHM 

> 30 RECOGNIZE 

> 40 STOP 

> 50 MI: TEST1 

> 60 IP: INTER2

> 70 GOAL: STOP 

> END 

[local nonexecutable MEMORY-Interrupt 

designation instruction] 

[Proc. 11] 

:Procedure 13 Procedure to search MAZE3. 
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> TO TEST1 

> 10 IF PATH GO TO 40 [ if PATH=TRUE, line 40; 

> 20 RECOGNIZE CONTINUE if PATH=FALSE, continue 

execution of RECOGNIZE] 

> 30 STOP 

> 40 RECOGNIZE 

> 50 STOP 

> END 

Procedure 13 Procedure designated by t'.lEMORY-Interrupt in 

RECOGNIZE. 

>RECOGNIZE [execute main procedure] 

Figs. 41-48 illustrate the turtle 's ,actions. 

N2 

Fig. 41 Turtle is Fig. 42 Turtle
headed in N1->N2 moves to N2. 
direction after 
first instruction 
in RECOGNIZE. 

Fig. 43 Turtle traverses 
N2->N4->N5->N2 and is about 
to execute line 10 in 
RECOGNIZE again. 



N4 

Fig. 44 Turtle turns toward 
N2->N4 path, PATH is set to 
TRUE and control transfers to 
line 100 in T TEST1.• 

N4 

N1 

Fig, 46 Line 10 in TEST1 
called line. 1 O in RECOGNIZE
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N4 

N1

Fig. 45 Line 10 in RECOGNIZE is 
executed, then TEST1 is called.

N4 

Fig. 47 Line 10 in RECOGNIZE 
causes this figure, however, 
line 10 in TEST1 causes control 
to go to line 20 in TEST1 Which
in turn causes control to be 
transferred to lino 20 in No text
RECOGNIZE which .results in Fig. 48. 
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N4
N3 **

Fig. 48 Goal discovered. 

Using the key-list and key-words provided the user may 

write :pattern recognition procedures analyzing :paths taken in

order to develop strategies. 

We would like the turtle to be aware of paths taken by 

mobile goals to enable the user to organize pursuit and intercept 

strategies, 



- 25 -

VI. Mobile Goals and Pursuit Strategies 

In our examples goals have been singular and stationary 

although provision is made for multiple stationary goals. 

We would like to provide the pursuit turtle with knowledge 

(complete or partial) of the paths (pattern) traversed by 

mobile goals, i.e., a game of turtle-tag. For simplicity we 

consider only one mobile goal and one pursuit turtle. An 

alternative scheme would provide for multiple pursuit and goal 

turtles. 

The pursuit turtle would have access to the goal turtle's 

key-list path chronology and current path key-word as well as a 

knowledge of the structure of the maze itself. If both turtles 

move at the same rate straightforward pursuit would be futile 

although we could provide for variations in turtle speed. 

If the pursuit turtle could block a path travelled by 

the goal turtle or intercept it at a node a capture would result. 

The margin of capture could be varied in an analogous fashion 

to the range of light source and sensor receptivity. 

In addition, communication between turtles could be 

established and counterstrategies employed. 
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VIII. Graphical Turtle-maze 

Using a light-pen the user creates a maze on a CRT screen 

and designates starting and goal points. 

Procedures written for the electromechanical turtle are 

interchangeable with the graphical turtle. 

IX. Interactive-feedback Interrupts 

So far interrupts in procedures merely passed control to 

other procedures. 

Another form of interrupt transfers control to the user 

thus providing a dynamic interactive human-machine system. 

x. Book-keeping 

All interactions between user, LOGO System, turtle and 

environment are stored. This includes mazes, procedures, paths 

traversed and blocked. All actions are recorded in the user's 

dribble-file and are available for analysis. 

XI. Computer Aided LOGO Analysis 

A computer program may assist the experimenter in the 

analysis of user-system interactions. 

Robert H . Seidman 

August, 1972.




