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DEDUCTIVE NECESSITY AND THE LOGICAL STRUCTURES OF REASONING: 
PIAGET'S PSYCHO-LOGIC MODELS 

A. Introduction 

In one of his popular explications of relativity theory, Albert 

Einstein notes that Euclidian geometry, like all geometries, is 

concerned not at all with the relationship of its ideas and entities to 

the objects of our experience. On the contrary, geometry is concerned 

only with the logical connection of these ideas and entities amongst 

themselves. This is, of course, true of all pure mathematics. 

Furthermore, while it is apparently meaningless to assert the truth 

of a mathematical system's axioms, we are nonetheless inclined to 

accept them as given In Einstein's words: 

Then, on the basis of a logical process, the justification of 
which we feel ourselves compelled to admit, all remaining 
propositions are shown to follow from those axioms, i.e. they are 
proven. A proposition is then correct ('true') when it has been 
derived in the recognized manner from the axioms. 

(Einstein, 2) 

Einstein thus raises a fundamental question: what is the nature of 

this "logical procss," this "recognized manner," whose justification, 

Einstein and all of us apparently feel "compelled to admit?" Perhaps its 

nature can be best captured by the terms logical necessity and self­

evidence. Is it derived from our physical world, intrinsic in the laws 

of nature and thus discoverable in the same sense as pi mesons are? Or 

is this notion merely an invention (a construct) like the relativistic 

space-time continuum and, like modern physics, subject to continual 

revisions and reconstructions? How does this notion evolve biogeneti­

cally and what is its ontogenesis? I make no attempt in this report to 

provide a conceptual analysis of "deduction." The interested reader is 

refered to Suppes (1973), von Wright (1971) and Sosa (1975). 
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The notions of logical necessity and self-evidence are not confined 

only to the realms of geometry, logic and pure mathematics. Consider 

the following items. 

Item 1 - Object Permanence. According to studies by Piaget and 
others, object shape and size become stable concepts at about the eigth 
month of life. Prior to this state of development, the neonate evidences 
no searching behavior when a much sought after object disappears from 
its visual field. However, between the ages of 8-10 months, the child 
begins to construct this first invariant: permanent object in proximal 
space. Object permanence is now a self-evident notion. 

Item 2 - Conservation of Quantity. If a young child is shown a ball 
of clay or plasticine that is then split and rolled into two equal balls 
before his eyes, he will readily admit the equality of the two balls of 
matter. If, however, one of the balls is rolled into an elongated 
sausage shape, the child will claim that there is either more or less 
substance in the new shape, depending on the thickness of the sausage. 
Similarly, if the sausage is chopped into small pieces, the child will 
claim that there is more quantity in the collection of the pieces than 
in the other ball. 

If the young child fills two identical glasses with equal volumes of 
liquid, she will claim that the quantities are no longer equivalent when 
the content$ of one of the glasses is poured into a narrower or wider 
glass, although she will maintain that it is the same liquid. It is not 
until approximately the age of 7-8,years that the child is able to 
percieve the invariance of continuous quantities. Self-evidence of 
quantity under reversible transformations is apparently not an innate 
notion and appears to require an intellectual construction. 

Item 3 - Transitivity of Length and Weight. If the young child is 
shown sticks A and B of equal lengths and sticks Band C of equal 
lengths, he is not at all certain of the equality of sticks A and C 
unless viewed together. The child is unable to carry out this apparently 
simple deduction until the age of 7-8 years. 

Given two identical brass bars, the young child concedes their 
equality of weight, A=B. She is then asked to compare the weight of B 
with that of a lead ball, C. Although the child expects C to be heavier, 
she can see that B=C on a balance. She is then asked whether or not A=C 
after being reminded that A=B and B=C. Until about the age of 8-9 years, 
the child remains unconvinced of their equality. Apparently, the notion 
of logical necessity is an ontogenetic one. 
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No textItem 4 - Conservation of Discontinuous Quantity and Number. A child 
places pairs of red and blue beads into two identical glass beakers by 
first depositing a red bead into Beaker #1 with his left hand and a 
corresponding blue bead into Beaker #2 with his right hand. The child 

No textwill readily admit that the beakers contain identical numbers of beads 
until the contents of one beaker is poured into a narrower or wider 
beaker. It is not until the age of 7-8 years that the child can conserve 
number in this sense. 

When a 4-5 year old is presented with a row of counters and is asked 
No textto construct another row containing the same number of counter's, she 
will typically construct a row similar in length without regard to 
equivalent cardinality. A 5-6 year old given the same task, uses the 
notion of one-to-one correspondence to construct a row equal in number 
and length to the model. However, should this child o bse.rve one of the 
rows lengthened without a change in the number of counters, she declares 
that the corresponding cardinalities are no longer equivalent. It is not 
until about 6-7 years that the child is able to conserve number in this 
sense. 

Item 5 - Classification and Seriation. When presented with a box of 
20 woodenbeads, 2 brown and 18 white, and if the young child concurs 
that all of the beads are wooden, he is then asked whether there are 
more wooden or brown beads? Most children reply that there are more 
brown beads and do not correctly respond until the age of 7-8.

If a young child is asked to place a set of sticks all:differing 
slightly in length, in ascending order, she is unable to systematically 
construct the series until 7-8 years of age. 

No textlf a young child is shown two sticks of slightly different lengths, 
A<B and then shown B<C while A is hidden, he is unable to make the 
deduction, A(C, until about age 7-8. 

Item 6 - The Logic of Verbal Propositions. It is widely believed 
that Piagetian theory holds that until the age of 11-12 years, the child 
is unable to reason with simple verbal statements (propositions). This 
has been interpreted to mean that it is only after the age of 11-12 that 
the child can "handle" conditional statements such as: No text

If it rains today, then I will carry my umbrella. 
and conditional arguments such as: No text

If it rains today, then I will carry my umbrella. 
It rains today. 
Therefore, I will carry my umbrella. 

If the above is the case, then as far as conditional statements 
reflect logical necessity, their acquisition is ontogentic. 

Evidence for these Items 1 through 5 can be found in Piaget (1941), 
I 

Piaget and Inhelder (1941), Piaget (1952), Piaget (1964) and Piaget 

(1967), respectively. 
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What appears to be most striking about the preceeding Items is the 

child's progressive development' from an apparent inability to make, what 
No text

seem to be, the most elementary deductions to a state of awareness that 

could be characterized as one of self-evidence or logical necessity. As 

we shall see, the child has, at various stages of his development a 

certain kind of logic and notion of self-evidence that cari perhaps best 

be characterized as "naive" logic. Just how does the child progress No text

through the transformation to what we call "adult" logic? 

Piaget's genetic epistemological approach appears to be a fruitful 

framework for addressing this question. Piaget has almost single­

handedly forged the discipline and it is his approach that has shaped 

much of developmental and child psychology 1:;ven though his 

epistemological viewpoint is not well understood and is not entirely 

without problems. See critiques in Mischel (1971), in Hamlyn (1978) and 

in piatelli-palmarini (1980), which contains a debate between Piaget and 

Noam Chomsky. To Piaget, epistemology comes first and psychological 

investigations second. The former serves as the catalyst a:nd framework 

B. Meta-theoretical Foundations: Genetic Epistemology

1. No textGenetic Epistemological Goals
I, 

A prominent goal of genetic epistemology is tq offer an explanation 

of knowledge, especially scientific knowledge, 

••• on the basis of its history, its sociogenesis, and especially 
the psychological origins of the notions and operations upon 
which it [knowledge] is based. (Piaget, 1970b, 1) 

1 The most complete explication may be found in Piaget's. as yet 
untranslated three volulme work (Piaget, 1950). My sources are from his 
translated writings, Piaget (1966; 1968; 1970; 1972a,b,c) and from 
secondary sources, Boyle (1969); Flavell (1963); Mays (1953}. 
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If knowledge is viewed as a continuous construction of reality, then 

the major goal of genetic epistemology is to investigate this growth of 

knowledge while avoiding the pitfall of becoming fixated upon one or 

another of its static structures. Thus, particular attention is paid to 

the transformation from adequate but relatively poorer kinds of 

knowledge to states that are apparently richer in both intention and 

extension. Einstein's contributrion to the phenomenom of relativity did 

not completely destroy previous paradignms, but made them less adequate 

to.describe reality. These inadequate paradigms were transformed, 

incorporated and enriched by the new structures (see Kuhn, 1970). 

Genetic epistemology studies the growth of knowledge both 

socio-historically and ontogenetically and tries to illuminate the 

fundamental connections. I will focus upon the ontogenesis of knowledge. 

The socio-historical connections may be found in Piaget (1952; 1966). 

If we postulate that knowledge is in a continual state of ongoing 

development characterized by the progression from one state to a more 

complete and effective one, then to accurately analyze this process 

genetic epistemological research must employ suitable methods and tools. 

A collaboration between psychologists and logicians has proven fruitful. 

2. Logic and Psychology 

Epistemology is the study of valid knowledge (i.e., how we come. to 

know reality) and genetic epistemology studies the process which is the 

passage from lesser to greater validity. This raises the question of how 
. . , 

our knowledge reaches reality and with it the relation between fact and 

validity, subject and object. If the question was one of pure validity, 

epistemology would depend soley upon logic. On the other hand, if the 

question was one of merely fact, epistemology would reduce to a 

psychology of cognitive functions. 
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Thus, if psychology is incompetent to describe forms of validity, 

and if logic is incapable of discovering empirical facts, a synthesis is 

essential in order to make sense out of the questions that espistemology 

raises. Experimental psychology is necessary to verify questions of fact 

that arise and logic is necessary to not only place these facts in some 

coherent and meaningful context for description and analysis, but to 

judge questions of validity. We may then view one of psychology's roles 

as studying subjects of all ages who adopt norms that logic must verify. 

It is within the logician's purview to formalize the structures that 

are suitable to describe the successive stages of norm development. One 

of the logician's roles is to determine the value of these norms and the 

characteristics of the epistemic progression or regression shown by the 

subject's cognitive development as studied by the psychologist. Thus, we 

are beter able to perceive the subject's dual nature: that of 
No text

psychological subject and that of epistemic subject, with the latter 

carrying within it the seeds of development of the epistemic norms that 

we wish to formalize and study. 

The subject who, for example, comes to recognize the logical 

necessity of length transitivity at 7-8 years clearly develops a norm. 

But how does this development occur and why? Can we be sure that it is 

aquired through experience alone? Is it transmitted from adult to child? 

Does it result from language and semiotic or symbolic construction? 

Piaget suggests that such norms arise as 

No text••• the product of a partly endogenous structuration and proceed 
by equilibration or progressive autoregulation. (Piaget, 1972,9) 

According to this view, knowledge arises not from a self-concious 

subject, nor does it arise from objects already constituted which 

impress themselves upon the knower. Knowledge arises from the 



7 

interactions that occur between the two. Thus, the initial problem of 

knowledge is the construction of intermediaries or structures that start 

from the point of contact between the body and the external world of 

things. It is action and not perception alone which plays the mediating 

role in the construction of epistemic reality. 

It is these structures, their development and transition that allow 

the child to construct the world of knowledge (and in particular, 

logico-mathematical knowledge) and leads to varying forms and 

developmental stages of logico-mathematical self-evidence and 

logico-mathematical necessity (hereafter, "self-evidence" and "logical 

necessity"). 

It is Piaget's hypothesis that there is a correspondence between 

psychological formation and logical formalization. Piaget does recognize 

that. there are limitations to logical formalizations: 1) any one logic 

by itself is inadequate and all logics taken together are too rich to 

enable logic in and of itself to form a single value basis for 

knowledge; 2) Godel's incompleteness theorems (Godel, 1931; Nagel and 

Newman, 1958) demonstrates the inherent limitations to formalization and 

axiomatization; 3) knowledge is not purely formal. 

Despite these limitations, logical formalization is a powerful 

descriptive tool for the study of the structures of knowledge. Although 

one task of genetic epistemology is to study the nature of the 

transitions (this is a factual question) from lower to higher states of 
No text

knowledge, Piaget would leave it to the specialists to determine which 

state is more advanced and to the psychologists to obtain the facts 

involved. 



3. Ontogenesis of Logico-Mathematical Knowledge 

What is logico-mathematical knowledge and how does it arise? This 

knowledge, according to Piaget's theory, is gained through a process 

called reflective abstraction which is derived from the fundamental 

process of organism adaptation. 

8 

Adaptation is a process that consists of the complementary processes 

of accommodation and assimilation, and is self-regulated by an 

equilibration mechanism. The nature of these processes is succintly 

summerized by Elkind: 

[Piaget] argues that intelligence is an extension of biological 
adaptation which, in lieu of the instinctive adaptations in 
animals, permits relatively autonomous adaptations which bear the 
stamp not only of our genetic endowment, but also of our physical 
and social experience. On the plane of intelligence we inherit 
the processes of assimilation (processes' responsive to inner 
promptings) and of accommodation (processes responsive to 
environmental intrusions). Assimilative processes guarantee that 
intelligence will not be limited to passively copying reality, 
while accommodative processes insure that intelligence will not 
construct representations of reality which have no correspondence 
with the real world. (Elkind, 1969, 329) 

The activities of imitation and play serve nicely to illustrate the 

concepts of accommodation and assimilation, respectively. Imitation is, 

for the most part, independent of internal forces and is responsive to 

the influences of the environment. On the other hand, play is mostly 

responsive to internal forces and somewhat independent of environmental 

influences. 

It is intelligence which maintains an equilibrium between 

assimilative and accommodative activities and is therefore "relatively 

automonous" of both internal and environmental forces. For example, the 

conclusion of a deductive argument is a new piece of information. An 

adaptation has taken place. Here we have an assimilation but no object 
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transformation (the premises have not been altered) and we have an ac­

commodation without the alteration of any mental structures (the re-

asoning processes have not been modified). 

Elkind, sums it well: 

Reason, or intelligence, is thus the only system of mental processes 
which guarantees that the mind and the environment will each retain 
its integrity in the course of their interaction•••! The question 
is not how much nature and nurture contribute to mentyal ability, 
but rather the extent to which various mental processes are 
relatively autonomous from· environmenta_l and instinctual influence • . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . ...nce. . . . 
Those processes which show the greatest independence from 
e.nvi romnental and internal regulation, the rational processes, are 
the most advanced of all human abilities. It is for this reason that 
Piaget reserves for them, and for them alone, the term intelligence. 
(ibid., 330) 

Ontogenesis is usually framed, when described inPiagetian terms, cr
within the context of the assimilation-accommodation-equilibration 

processes. I have not adopted that approach here because the biological 

No textmetaphor is not as well suited as /the logical metaphor ( reflective 

abstraction) to the description of the processes examined in this study. 

These processes, the rational processes, include those components of No text

intelligence that we call deductive and as such are the fundamentalcom­

ponents of intelligence and understandably one of the most difficult to 
I 

No text
describe. For a thorough and deep explication of the biological metaphor 

I 

associated with adaptation, see Piaget (1966). 

Before we can consider the development of logico-mathematical 

structures and developmental stages we must determine just how logico­
No text

mathematical knowledge comes about. Only then will we be able to under-

stand the development of logico-mathematical reasoning._ 

Let us begin by agreeing that logical and mathematical structures 

and knowledge are abstract and that physical knowledge is concrete (it 

is based upon direct experience). But what is logical and mathematical 
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knowledge abstracted from? Piaget finds it useful to make the 

distinction between simple (or empirical) abstraction and reflective 

abstraction. Experimental or empirical knowledge appears to be derived 

from objects themselves, through perception and sensorial origins. 

However, Piaget postulates that 

••• our knowledge stems neither from sensation or from perceptions 
alone but from the entire action, of which perception merely No text
constitutes the function of signalization. The characteristic of 
intelligence is riot to contemplate but to 'transform' and its 
mechanism is essentially operatory. (Piaget, 1972c, 67) 

Operations are interiorized actions that are coordinated into group-like 

structures. Thus, we can only know an object by acting upon it and 

transforming it in some way just as the organism adapts to the world 

through the processes of assimilation and accommodation throught the 

mechanism of auto-regulation. 

One way of transforming the object we wish to know is by modifying 

its  position, its movement, or its characteristics in order to explore 

· its nature. This is, of course, phyisical action. Another way of 

transforming the object is by enriching it with characteristics or new 

relationships which retain the object's original characteristics or 

previous relationships but at the same time complete them by systems of, 

/. 
for instance, classification, numerical order and measure. These are 

logico-mathematical actions. Thus, we find that logico-mathematical 

abstraction is derived from the action itself and not from the object 

ac·ted upon. Two examples will help to clarify the distinction between 
No text

the two kinds of abstraction and to illustrate the notions, of 

logico-mathematical knowledge and necessity. 
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No textC<1se 1: Empirical Abstraction. A child is able to heft objects in 
.her hands and thus can come to the realization that they have different 
weights. Sometimes bigger things weigh more but other times smaller 
things are heavier. She finds all of this out experimentally, thus her 
knowledge is abstract.ed from the objects themselves. 

Case 2: Reflective Abstraction. Many young children can count up 
from one to ten and thus assert that there are ten pebbles lined up in a 
row. But their conception of number is shakey as we saw in Iteiii 4. 
Piaget frequently uses the following illustration to give concrete 
meaning to reflective abstraction. 

A small child was engaged in counting pebbles and after lining them 
up in a row proceeded to count them from left to right and counted ten. 
He then counted t.hem from right to left and again counted ten. No matter 
how he arranged the pebbles the child always counted ten. The child thus 
discovered the notion of mathematical commutativity through his actions. 
Commutativity is not an intrinsic property of pebbles in and of them­
selves, although there certainly was a physical aspect to the knowledge 
involved. Order was not inherent in the pebbles themselves, it was the 
subject: who arranged them in different configurations. Thus, the 
logico-mathematical notion of commutativity was derived not from the 
mere physical properties of the pebbles but from the actions of the 
child upon the pebbles. 

Logico-mathematical experience consists of acting upon objects. The 

abstraction of knowledge !is based, however, on actions and not soley 

upon the objects themselves. Action begins by conferring upon. objects 

certain characteristics that they previously did not have but which 

enable them to retain their intrinsic characteristics. The experience is 

concerned with the cortnections between characteristics introduced by 

actions on the object. 
No text

What the child discovers in Case 2 is not a physical characteristic 

of pebbles, but an independent relation between the two actions of 

reunion and ordination. This experience is authentically logico­

mathematical, since it deals with the actions of the subject and not 

with objects per se. At a certain developmental level, according to· 

Piaget's theory, actions can be interiorized as sybolically manipulatead. 

operations thus avoiding the need to manipulate physical objects. 
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The term "reflective" has two psychological senses, according to 

Piaget. In its first sense, reflection is the transformation from one 

hierarchical level to another. For example, the transition from the 

level of action to the level of operation (internalized action). In its 

second sense, reflection refers to the process of mental reflection, 

meaning that at the level of mental thought a reorganization takes 

place. A general model of equilibration, which includes reflective 

abstraction, can be found in Piaget (1976, 1977). 

For Piaget, action and operation do not appear as singular entities 

standing alone and reflective abstraction is not based upon action hut 

upon coordinated action: 

Actions can be coordinated in a number of different ways. 
They can be joined together, for instance; we can call 
this an additive coordination. Or they can succeed each 
other in temporal order; we call this ordinal or a 
sequential coordination •••• Another type of coordination 
among actions is setting up a correspondence between one 
action and another. A fourth form is the establishment of 
interactions among actions. (Piaget, 1970b, 18) 

Piaget contends that the various forms of coordinated actions 

(schemes) have parallels in coordinated logical operational structures. 

The coordinations at the level of action are thus the bases of the 

higher level psychological structures as. they· develop in mental thought. 

These operational structures can be described by formalized logical 

structures. 

It is important to note that Piaget does not postulate that the 

formation of 1ogico-mathematical structures is explained by language 

alone, although language coordinations are indeed important. These more 

advanced logical structures are formed by the coordination of actions 

which are the bases of reflective which is in turn the fundamental 
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However, at about the age of 7-8 years, seriation is established 

operationally by systematically choosing the smallest remaining element

in the series. This is an indication that the child realizes that 

element C is both smaller than elements D, E and those that follow and 

is bigger than A, Band C. Thus, the structure involved becomes whole 

and closed, and relations within this structure are now interdependent 

and are able to be composed amongst themselves without any recourse to 

things outside of the system. 

At this stage in the child's intellectual growth, transitivity 

appears as a necessity and as Piaget puts it: 

[L]ogical 'necessity' is recognized not only by some 
inner feeling, which cannot be proved, but by the 
intellectual behavior of the subject, who uses the newly 
mastered deductive instrument with confidence and 
discipline. (Piaget, 1971, 316) 

The second reason accounts for the formation and closure of the 

relevant structure. A structure, according to Piaget, can impose itself 

as a necessity and does this by "endogenous" means. This structure is 

the product of a "progressive equilibration." 

The necessary character of logico-mathematical structures emerges 

from their "progressive equilibration" which is in turn derived from 

organism autoregluation. Piaget notes that the hereditary character of 

instinct, for example, precludes both generality and necessity because 

it is species specific and wholly contingent in nature. Instinctive 

behavior is always of a particular and specialized kind compared to the 

"mobile universality" of intelligence. 'Internal equilibration within 

cognitive structures explains the generality and mobility of intelli-

gence through cognitive thought. 
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a. The Sensori-motor Stage 

At first the young infant's primitive universe does not include 

permanent objects nor is there any really fixed boundary between self 

artd other. This stage might well be called the "construction of self." 

Piaget contends that a reality structure that does not include 

boundaries betwen subject and objects contains only one possible link 

which will later serve to differentiate the child's world into subject 

and objects. This link is action. 

The young infant, although not conscious of self as a separate 

entity, nevertheless relates everything to his own body. Because these 

actions lack coordination each action constitutes a small yet isolable 

whole which has the effect of relating the body itself to the object. 

Since these actions are solitary and isolable, their only reference is 

to the body itself which in turn causes an automatic centering which is 

neither voluntary nor conscious. This centering is termed egocentrism. 

Examples of egocentric actions are sucking, prehension and looking. 

The child affirms himself later by freely coordinating his actions. 

Objects are then constituted as they comply with or resist the 

coordinations of movement. As the infant progresses through the 

sensori-motor stage four types of assimilation can be distinguished. 

1. Reproductive (or Funcitonal) Assimilation: Pleasurable action 
induces further action of the same kind (e.g., sucking). The exercise of 
schemata is inherently satisfying. 

2. Generalizing Assimilation: When the completion of a response 
pattern becomes the stimulus for the repetition of the response we have 
a circular reaction. During the repetition of a circular reaction the 
infant may come into contact with a different aliment (i.e., objects 
that stimulate the assimilatory process) and learn to perform the 
response upon them. For example, the child learns that he cannot only 
suck his mother's nipple but also his thumb and the nipple of a feeding 
bottle. 
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2. No textPrimary Circular Reaction Substage ( 1-4 months): "Primary" means 
that. the first circular reactions that appear are non-purposive and are
a part of the infant's innate behavior patterns (e.g., sucking and 

No textgrasping . However, the child now no longer responds in a purely 
reflexive manner and begins to display signs of voluntary.behavior. This 
substage marks the start of the growth of schemata and the operation of 
recognitory assimilation. Because the infant's actions bring him into 
closer.contact with new objects, generalizing assimilation arises which 
may slightly modify the child's behavior. 

3. Secondary Circular Reaction Substage (4-8 months): Reactions here 
are more outwardly directed than in the previous substage. The child 
tries to cause the repetition of interesting phenonmena. For instance, 
if. she unsuccessfully tries to grasp a suspended object but manages to 
touch it, the swinging movement may be novel to her. She may try to 
reproduce this occurrence (reproductive assimilation). When she sees 
another suspended object she will assimilate it into the same grasping 
schemata (recognitive assimilation). When she repeats this action in a 
new. situation the assimilation is a generalizing one. 

It is not clear just how much intentionality is evidenced at this No text
substage. The child's actions may be a kind of motor recognition .of the 
object involved (i.e., his movements serve to define the object for 
him). This could very well be the beginning'of the internalization 
process where actions are internalized to contemplative thought. 
Imitation is greatly evidenced at this substage but only by means of his 
own actions that he can observe (i.e., since he cannot see his own 
torgue, ordinarily, he cannot imitate acitons involving-it). 

4. Coordination of Secondary Schemata Substage (8-12 months): At 
this point, intentional behavior is in evidence as the child directs his 
behavior towards a desired outcome. Secondary circular reactions have 
become.differentiated with means clearly subordinated to ends (in 
Substage 3, means and ends formed part of one secondary reaction). The 
infant's world begins to evidence some organization. Because the baby 
can now remove obstacles to reach desired objects, we can say that the 
child comprehends spatio-temporal space. He can now imitate even if he 
cannot see his own actions and he has a limited ability to apply his 
schemata to new events. For example, if 1a doll is hidden behind a. 

No textcushion, the baby is able to push the cushion aside to find the doll. No text
After ·some repetitive behavior, if the doll is removed from behirid the 
cushiOn in full view of the baby, he will still look behind the cushion 
in search of the doll. No text

5. Tertiary Circular Reactions Substage (12-18 months): Here, the 
child in addition to differentiating actions into means and ends, 
discovers new means. Instead of pushing away a cushion to get at an 
object, she might pull it away and repeat this action on other 
occassions (circular). The child now searches for the doll elsewhere if 
it has been removed from behind a cushion in full view. She is, however, 
incapable of reasoning about hidden movements. If, for instance, we 
first place the doll behind a cushion and then surreptitiously temove 
it, the child will be incredulous when she discovers that the doll is 
missing. 
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The baby's imitation powers are more advanced at this substage. She 
learns about herself and her world through imitation (which is 

No textessentially accommodation) and play (which is essentially assimilation). 

6. New Means Through Mental Combinations Substage (18-24 months): 
The baby now has a mental representation of his world and knows his 
place in it. He is an object amongst others and his behavior is becoming 
increasingly emancipated from sensori-motor actions. We see the 
beginning of the use of symbolizaiton in problem-solving. Imitation 'can 
now be deferred. 

We should note that the process of reciprocal assimilation can 
consist of assimilating the same aliment into .two new schemes 
simultaneously. If, for example, an object shaken makes a noise, it can 
then become something to listen to and something to look at. This leads 
to a reciprocal assimilation which leads to reproductive and 
generalizing assimilation which results in the child I s shaking any toy 
to discover what noises it makes. We can see that in this case the ends 
and means are essentially undifferentiated. However; at this substage, 
the child will set a goal before he is able to aim at it and uses 
different schemes of assimilation to reach it. For example, he may try 
to move a hanging string in his crib in order to shake sound-producing 
toys suspended by the string but which are beyond his reach. 

We can see in Substage 6 the beginnings of what has been called 

reflective abstraction. New combinations are constructed by abstraction 

upon either objects themselves or by abstraction from schemes of action 

applied to objects. The latter mirrors reflective abstraction. Thus, the 

child's recognition of a suspended object as something that can be 

rocked indicates an abstraction of the first kind. The coordination of 

means and ends while accounting for the proper sequence of movements is 

a new form of differentiated behavior acquired from actions. This is 

more akin to reflective abstraction. 

Apparently, knowledge, with its "logico-mathematical" and "physical 

bipolarities" is not structured by language acquisition alone but is 

formed on the level of action. Actions,become coordinated causing the 

subject and objects to differentiate through the progressive refinement 

of the mediating structure, called the structured whole. The French term 

is "ensemble des parties" and its varied connotations are explained in 

Inhelder and Piaget (1958, ff. 18, xix). These structures are next 
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Item 8. Piaget, with some humor, tells the story of his young 
daughter and the slug. While walking one day together, she saw a slug on 
the ground. Further along on the walk she saw another slug but believed 
it was the first one reappeared. Even when she returned to view the 
first slug, then the second, she was unable to express the idea of 
"another of the same type." 

This inability to construct true classes and to work with the idea 

of inclusion causes the child to make the kind of error shown in Item 5, 

the wooden bead experiment. In this case, the class wooden beads is an 

abstraction with subclasses of brown and white beads the reality of the 

moment. The child concentrates on the most obvious difference between 

beads, their color. Thus, at this stage of cognitive development, the 

only intermediaries between subject and objects are pre-concepts and 

pre-relations. The former lack the quantification of "all" and "some" 

and the latter lack the relativity of concepts. 

Item 9. The child is shown some round red counters and some blue 
counters. Some of the blue counters are round and some are square. When 
asked if all round counters are red the child will reply affirmatively, 
but he will deny that all square counters are blue because there exists 
round blue counters. Here; the child can identify two classes having the 
same extension but cannot understand the relation of sub-class. This is No text
because he cannot fully comprehend the notions of "all" and "some, or 
at least not their operational meanings. 

No textItem 10. If the young child (A) of this substage, has a brother (B) 
he will readily admit to this fact but will deny that B has himself a 
brother. 

/, 
If an object A is to the right of object B, it cannot be to the left 

of sonie other object, according to the ,child at this developmental 
substage. To the young child, being to ;the right is an absolute 
attribute. 

For this child, the serial relation A<B<Cmeans that B can only be 
"in-between" because the quantification "smaller than" excludes that of 
"larger than." 

No text

These pre-concepts and pre-relations, according to Piaget, are 

intermediaries between schematas and concepts, and are not able to 

adequately deal with the immediate situation with objectivity. The 

child's logic is a rather primitive adult logic. Thought is still in the 

process of developing out of action. 
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2) The Substage of Intuitive Thought (4--7 years) 

Like the previous stage, this substage· is characterized by a 

decentering process and the discovery of certain objective 

relationships. In the sensori-motor stage of development, centering"is 

focused unconsciously upon the body itself. An analogou$ centering is 

reproduced at this subsgage, but on the higher plane of pre-concepts and 

pre-relations. In progressing from one structure to the next, what was 

already evident on the sensori-motor level must now be reconstructed on 

the higher plane of pre-operational thought. 

The decentering at this substage is between concepts (interiorized 

actions) a.nd like the decentering at the previous stage, is due to 

progressive coordinations. These coordiantions take the form of 
I 

fuctions, called constituent functions. Consituent functions are ordinal 

or qualitative whereas constituted functions (appearing at the next 

stage) imply "effective". quantification. Both functions exhibit what 

piaget calls "univocally straight" application. "Straight" means in the 

direction of application, An illustration will be useful. 

Item 11 . If a child of 5-6 years is shown a piece of thread 
positioned about a peg forming a right angle (see Figure 2} he predicts 
correctly that pulling one end will No textlengthen the pulled end and shorten 
the other end. No text

Figure 2. Example Of A Constituent Function 
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In this Item, one variable is modified because of its functional 

dependence upon the other and thus because of their coordination, 

pre-relations become true relations. However, constituent functions lack 

reversibility, the hallmark of constituted functions and operations. 

Thus, although the child knows that by pulling segment A, segmentB 

decreases, he is unable to propose the conservation of total length of 

the string. He lacks the necessary concept of quantification so that the 

pulled segment is typically assumed to lengthen more that the other 

segment shortens. The child can thus be said to utilize a "semi-logic" 

that lacks inverse operations and is not quite yet an operational 

structure. Constituent functions are highly goal directed and have a 

strong connection with action schemes. 

Because the child's intellectual structures lack this reversibility 

and lack elementary methods of quantification, there exists no 

conservation of discontinuous or continuous qualities (see Item 4). The 

child centers on one aspect or another of the situation in question. For 

example, the height of a liquid, ignoring its width. As the child 

propresses through this substage she comes to realize that each change 

in height is compensated by a change in width. She thus decenters her 
I 

thinking and is able to think and reasori about multiple aspects of the 

same event simultaneously. The child becomes better able to mentally 

perform these compensating changes and thus see how she can return to 

her starting point (reversibility). No text

Coordinations between conceptualized actions (coordinative 

assimilations) enables the child at this substage to separate the 

individual from the class whereas at the preceding substage the child's 

classification consists of figural collections. A figural collection of 
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elements consists of elements put togerther on the basis of relations 

betwe.en disparate things and especially out of the need to give a 

.collection spatial configuration (rows, circles, etc.). These 

c.ollections are also constructed on the basis of re.semblances and 

differences, but the child has not yet acquired the capacity to separate 

exten.sion from intension. However, at age 5-6 years the child is able to 

separate the individual from the class and although collections are no 

longer figural, the quantification of "all" and "some" is still not 

achieved. For a detailed treatment of this matter see Inhelder and 

Piaget (1964). Transitivity of length is still not mastered at, this 

subs tage (see Item 3). 

One final Item will help us view the transition from this stage to 

the next one. 

Item 12. Three colored beads are strung on a wire which is fitted 
with an opaque cover so that the beads can be slid out of sight. See 
Figure C-3.

Red 

Figure 3. 

yellow 

blue 
No text

opaque 
sleeve 

Group Of Transformations Illustration 

The beads are pushed int·o the sleeve as· the child watches and he is 
asked the order of the colors to be sure that he has correctly observed 
the situation. The frame holding the wire is now rotated 180° and the 
child is asked which colored bead will emerge from a specified end of 
the sleeve. The 5 year old will be able to answer correctly for one or 
two rotations but will be unable to abstract_ the odd-even rotation 
relation and the bead order. 

This example is particularly instructive because it can be used to 

illustrate features of a group of transformations. To Piaget, the 

concept of algebraic group is fundamental to his account of the 
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operational thought of the next two stages of intellectual development. 

For no matter how many rotations (partial or full) the frame goes 

through it will come to rest in a position (state) on the 360° continum

(closure). Any final state can be reached from any starting .state by 

merely rotating the frame clockwise or counterclockwise and the order of 

rotations is inconsequential (associativity). From any final state we 

may return to our starting .state by performing an inverse rotation. 

Thus, every action has an inverse. From any state a rotation of plus or 

minus 360° brings us back to our starting state. A 360° rotation is thus 

the general identity element. Thus, the states of the frame and the 

rotations constitute an algebraic group and Piaget contends that the 

older child's thinking may be described in terms of algebraic groups. 

The younger child's thought cannot be so described because his 

semi-logic lacks the operational structure embodying reversibility. 

It should be noted that any comprehensive treatment of the above 

stages and the subsequent ones must take into account the role of 

language. However, while it is important, it is not crucial for my study 

of the ontogenesis of logical necessity. 

C. Psycho-logic Model I: The Structure of concrete Operations 
No text_ _

1. The Emergence of Concrete Operations,· 

We have seen that the pre-operational child operates on a plane of 

representation whereas the sensori-motor infant operates on a plane of 

direct action. The older child, at the 'roncrete-operational stage of No text No text

development also operates at the plane of representation but at a 

qualitatively different level. 



[The concrete operational child] seems to have at his command 
a coherent cognitive system with which he organizes and 
manipulates the world around him. Much more than his younger 
counterpart, he gives the decided impression of possessing a 
solid cognitiye bedrock, something flexible and plastic and 
and yet consistent and enduring, with which he can structure 
the present in terms of the past without undue strain and 
dislocation, that is, without the everpresent tendency to 
tumble into the perplexity and contradiction which mark the 
pre-schooler. (Flavell, 165). 
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In the sensori-motor period, cognitive actions are externalized and 

mostly observable. But as the child gets older, these cognitive actions 

become more and more interiorized and divested of their concrete 

substance. The representational cognitive actions cohere to form complex 

and integrated systems of actions with definitive structural properties. 

These tight and highly structured systems are the hallmark of 

concrete and formal operations. Pre-operations are isolated cognitive 

expressions which are not part of tight ensembles. Structural systems 

exist more or less in the sensori-motor and pre-operational stages but 

it is not until concrete operations that they coalesce into highly 

structured systems. 

Piaget uses logico-mathematical models to describve the cognitive 

structure of operations (concrete and formal thought). These logico­

mathematical structures are models of cognitive structures. The grouping 

is the model of the concrete operationa,l stage of intellectual 

development and is the starting point for the subsequent stage. 

Structures exist even in the sensori-motor state, according to 

Piaget, but they lack coherence and are not as well organized as later 

ones. As an example of early structure, recall that there exists 

classificatory forms of behavior that occur either in the differentiated 

state (the subject divides objects into collections) or are inherent in 

other forms of actions (he acts on objects in some way). The actions 
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themselves imply classification (e.g., objects which can be sucked and 

those which cannot). Piaget notes that these "classificatory unities" 

(his term for pre-classes or "ill-defined classes") form an elementary 

and imperfect system. In order to understand the nature of a new aliment 

the infant will seize, shake, suck, and rub it. Thus, the child tries to 

incorporate it into his own schemes of action. 

Multiple structural relations exist between these schemes. For 

instance, all things that can be grasped can also be seen, but this in 

not so for the converse. All things that can be heard (and within visual 

range) can be seen, but the converse is not true. Finally, there are 

things that can be seen and grasped simultaneously, seen but not 

grasped, grasped and not seen, and neither seen nor grasped. These 

systems are a far cry from the coherent structrured wholes (capable of 

closure) of concrete and formal operations This closure guarantees, as 

we shall see, the necessity of the combinations that comprise them 

through direct, reversible and inverse transformations upon operations. 

For example, the child at this stage of development is now able to 

arrange a series of rods differing in size (A(B(C( ••• ) in order by the 

exhaustive method of finding the smallest, then finding the smallest of 

the remaining rods, etc. Now the child r.ecognizes that C will be both 

greater than A and B (C)A,B) and smaller than the remaining rods 

(C<D,E,••• ). The child now takes account of the two relational 

directions simultaneously. This is an example of reversibility of 

relations. Because there is an anticipation of the two inverse relations 

(>,<) transitivity comes about (because of the closure of the system) 

and is viewed now as a necessary relationship. 



30 

Conservations (of continuous and discontinuous quantities) are 

closely connected with transitivity and closure of the structure of 

concrete operations. Thus, A=C is deemed necessary because A=B and B=C 

and this is because a property is conserved from A to C. At this stage, 

once the child accepts A=B and B=C he will view A=C as self-evident by 

the above arguments

The child typically uses three types of arguments to support 

conservation moves: 1) since nothing has been added or removed the 

quantity is the same. Here we see the appearance of the identity 

operator of the group of natural numbers; 2) conservation from A to B 

because A can be restored from B. We see reversibility by inversion; 3) 

quantity is conserved because the object has, simultaneously lengthened 

and contracted, for example. These two simultaneous modifications 

compensate one another and illustrates reversibility by reciprocity of 

relations. Now the child thinks of the system as a whole. The structure 

is systematic and closed upon itself. As Piaget puts it: 

[H]e does not measure in order to evaluate the variations 
and he only judges their compensation a priori and in a 
purely deductive fashion, which implies the preliminary 
postulate of the invariance of the whole system. (Piaget, 
1972, 37) 

The concrete operational system results from continuous transforma­

tions from the previous stage of development (transitions to certain 

limits mentioned above). These transformations or transitions comprise 

three interconnected aspects: l) reflective abstraction dserives higher-
No text

order structures from lower-order structures; 2) coordination is 

directed at the whole of the system and by connecting diverse schemes 

brings about closure; 3) self-regulation brings the systems' connections 

into equilibrium in their direct and inverse aspects. This equilibrium 

gives rise to the systems' operational reversibility. 
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2. Concrete Operational Groupings 

Piaget utilizes a mathematical structure called a grouping to model 

concrete operational cognitive structures. The grouping is a hybrid 

structure containing components of group and lattice structures. Of the 

nine distinct groupings (eight major ones and one minor one) which 

describe this mental structure, four pertain to class operations and four 

to relational operations. These groupings describe the organization of 

logical operations (operations dealing with logical relations and 

classes). In addition, these ·groupings also serve as models for 

infralogical operations (Inhelder and Piaget, 1964), values (Piaget, 

1941) and interpersonal relationships (Piaget, 1950). The groupings deal 

with content of the intensive quantificatiort type. Here, relative 

magnitudes of component parts or subclasses are irrelevant, we need only 

know whether each part or subclass is less than its whole or supra­

ordinate class .

I shall use the zoological class hierarchy in Figure 4 as·a paradigm 

for the explication of the concrete operational groupings. 

E (vertebrates) 

D (mammals) 
No text

D (non-mammals) 

C (canines) 

B (dogs) 

A (spaniels) 

Figure 4. 

(non-canines) 

(non-dogs) 

A' (non-spaniels) 

Zoological Hierarchy 
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The unprimed classes are called primary classes and refer to a 

singular class (e.g., B=the class of dogs). The primed classes are called 

secondary classes and refer to all the subclasses within its 

supraordinate class and excluding the class indicated by its letter 

unprimed (e.g., B'=all the subclasses within the class of canines, C,

excluding the class of dogs, B). 

We can mentally pose (by logical additon, +) and unpose (by logical 

subtraction,-) a class, giving us the elementary operations +D, -D, +C, 

-C, etc. We may pose a series of operations: 

(+B) + (+B') + (+C') = (+D) 

or simply B + B' + C' = D 

C - B' =,B 

Formula (1) tells us that the class of dogs together with the 

(l) 

(2) 

subclasses of non-dogs that are canines, together with the subclasses of 

non-canines that are mammals gives us the class of mammals (B+B'=C and 

C+C'=D). Formula (2) tells us that posing the class of canines together 

with unposing the subclasses of non-dogs that are canines gives us the 

class of dogs, B. 

A grouping is defined as a set of elements. (here classes) and the 

logical operation of combining or adding equations of the form (A+A'=B), 

(B-A=A'), (-D-D'=E), etc. A grouping has five properties (obeys five 

rules): composition (or closure), associativity, general identity, 

reversibility and special identities. The first four rules are group­

derived, the last rule is lattice-derived. The following explication of 

the groupings of concrete operations follows Flavell (1963) which in turn 

is based upon Piaget's (1942, 1949) treatment. I make no attempt to give 

formal proofs of grouping properties. 
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a. Grouping I - Primary Addition of Classes 

1. Composition. The result of combining any element (a class addition 

equation) with any other by means of logical addition of equations is 

itself an element (an equation) in the class system (hence closure). 

(B+B'=C) + (C+C'=D) = (B+B'=D) 

(C-B'=B) + (D-C'=C) = (D-C'-B'=B) 

(3) 

(4) 

Note that in Formula (4), the sum of the two equations is not the sum 

of the right-hand members of each equation (not B+C=C). Note that 

(D-C'=C), but that C is already "denuded" of B' by (C-B'=B) so that Bis 

the final result of the operations. 

2. Associativity. It is clear that the series sum is independent of 

the order of operations. Formulas (5) and (6) are both equal to Formula 

(7)
[(C-B'=B) + (D-C'=C)] + (E-D'=D) 

(C-B'=B) + [(D-C'=C) + (E-D'=D)] 

(E-D'-C'-B'=B) 

(5) 

(6) 

(7) 

3. General Identity. One and only one element leaves any other 

element unchanged whenever both are added to one another. This element is 

called the general identity element and is defined as the sum of two null 

classes, (0+0=0). 

(o+O=O) + (E-D=D') = (E-D=D') (8) 

4. Reversibility. For all elements in the set, there exists a unique 

element called its inverse. An element added to its inverse yields the 

identity element. The inverse of (C=C'=D) is (-C-C'=-D). Thus, if we 

unpose the class of canines and unpose all the subclasses of non-canines, 

we are in effect unposing the class of mannals (See Figure 4). 
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(C+C'=D) + (-C-C'=-D) = (O+O=O) (9) 

5. Special Identities. Note that Figure 4 is a semi-lattice in which 

a least-upper-bound can be found for any pair of classes. (In a 

semi-lattice, every two elements have a least-upper-bound but unlike a 

lattice it is not the case that every two elements have a greatest­

lower-bound.) For the general case, 

Y + X = X (10) 

where X and Y are class equations and Xis a class which subsumes Y. 

Because Xis the least-upper-bound of Y and X, we can see that any 

class will play the role of identity elements to all supraordinate 

classes. This lattice-derived property is the special identity called 

resorption. 

When Xis the same class as Y (X=Y) we have a special case of Formula 

(10) where a class is an identity element with respect to itself. This 

lattice-derived property is the special identity called tautology. 

Formulae (11) through (13) illustrate these two special identities. 

(B+B'=C) + (B+B'=C) = (B+B'=C) 

(A+A'=B) + (C+C'=D) = (C+C'=D) 

(-C-C'=-D) + (-D-D'=-E) = (-D-D,'=-E) 

( 11) 

(12) 

(13) 

The special identities cause the groupings to have both lattice and 

group properties and, as Flavell points out, leads to special problems. 

These problems derive from the many exceptions to the general grouping 

properties and thus require special rules and conventions (see Flavell, 

1963, 176). For example, in all the groupings, the special identities 

restrict the generality of the associativity law. In Grouping I, 



35 

[(A+A'=B) + (A+A'=B)] + (-A-A'=B) # (A(A+A'=B) + [(A+A'=B) + (-A-A'=-B)] 

because the left side of the inequality sums to (0+0=0) while the right 

side sums to (A+A'=B). Piaget's special rules takes care of these kinds 

of problems but their inclusion in the theoretical formulations attest to 

the lack of simplicity and elegance of the mathematics. 

b. Grouping II - Secondary Addition of Classes (Vicariances) 

Although the elements of groupings are class and relation equations 

rather than singular classes and relations, it is possible and much more 

convenient to treat singular classes and relations as the elements of 

groupings provided that Piaget's special rules are utilized. The 

remaining groupings will follow this procedure. 

Recall that secondary classes refer to all complenentary classes 

under the immediate supraordinate class. Thus, B' refers to such canine 

classes as wolves, dingos, etc. We can then establish within B' a class 

canines. This is the complement of B2 under the class C. Thus, it is 

possible to create a series that runs parallel to the initial one, Figure 

4, and that rejoins it at the next higher rank primary class. Thus, 

B3+B3'=C, A1+A1'=B, etc. These equations are called complementary 
I 

substitutions or vicariances. The important rule here is that if we are 

given classes Xi, Xj and Xi' and Xj', we can always substitute 

Xi for Xj providing we substitute Xi' for Xj' in the same 

equation. 

For example, B+B' may always be substituted for B2+B2'€ Note that 

the non-wolves include the dogs and that the non-dogs includes the 

wolves. Thus, wolves (B2) plus non-wolves (B2') sum to canines (C) 

and that dogs (B) plus non-dogs (B') sum to canines (C). 
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1. Composition. The sum of two or more vicariances yields a 

vicariance. 

(14) 

2. Associativity. This property holds provided that special rules are 

followed. 

3. General Identity. (O+O=O) is unique. 

4. Reversibility. The inverse of a posed vicariance is the vicariance 

unposed. The sum of a vicariance and its inverse is the general identity. 

5. Special Identities. 

Tautology holds W 

Resorption holds. 

A+A=A 

B2'+B2'=B2' 

B+C=C 

B2+C=C 

B2'+C=C 

B+B2'=B2' 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

Formula (21) holds because Bis a Subclass of B2' and Formula (22) 

holds because B3' subsumes B which subsumes A. 

c. Grouping III - Bi-univocal (one-to-one) Multiplication of Classes 
I 

It is possible for classes to be multiplied and divided as well as 

added and subtracted. We may take the class of mammals, M1, and 

partition it into subclasses, vertebrates (A1) and invertebrates 

(B1)• Similarly, we can take the same class of mammals (call it now 
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M2) and partition it according to whether the mammals are flying (A2) 

or non-flying (B2). We may multiply one partition by another resulting 

in the logical product or intersection (greatest-lower-bound of the 

semi-lattice) of the two. We obtain the largest class which the two 

partitions comprise in common. See Figure 5. 

Figure 5. 

A2

Bi-Univocal Multiplication Of Two Classes 
Or Series (M1,M2) 

We establish a one-to-one correspondence between each partition in 

two or more series. In Figure 5 we obtain a 2X2 matrix where A1A2 

indicates the subclass of mammals that are vertebrates (A1) and fly 

(A2), and so on. Thus, 

(23) 

A Bi-univocal multiplication may contain more than two series, M1 X 

M2 X M3 (where M3 has three partitions), thus giving us 12 

subclasses. 

1. Composition. The multiplication of two classes (partitions) gives 

a class (eg., A2 X B1 = A2B1) and the multiplication of two 

series yields a set of classes (see Formula (23)). 

2. Associativity. This property holds. For instance, (M1 X M2) X 
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4. Reversibility. The inverse operation is class division (the 

abstraction or dissociation of one class from a class product). In our 

example, A1B2-;-, B2 = A1. If mammals that are non-flying are 

dissociated from the class of non-flying vertebrates, we end up with the 

larger class of vertebrates. Class multiplication generates classes 

smaller in extension whereas, class division generates classes larger in 

extension. 

3. General Identity. A-;-A = z. Clearly, Z, cannot be the null class. 

Z is defined as the largest, most general class possible relevant to the 

class series we are dealing with. Z is the hypothetical class that 

contains all the others. For example, if Dx = animals, then 

Dx/Dx=Z, means that we have removed the class-defining limitation 

"animalness," leaving the most general possible class relevant to 

"animalness-nonanimalness." Z might then be appropriately called "the 

class of beings defined by no specific delimiting qualities (Flavell, 

1963, 179). Note that the product of Z with any other class leaves us 

with that other class (e.g., A1 X Z=A1). 

5. Special Identities W 

Tautology clearly holds: 

(24) 

Absorption (rather than resorption which is a property of class 
addition) holds, because a'supraordinate class is always partitioned 
into its subordinate class: 

(25) 

d. Grouping IV - Co-univocal (one-to-many) Multiplication of Classes 

Here, one member (partition) of a series is multiplied (set in corre­

spondence with) each of one or more additional series. See Figure 6. 
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Multiplying K1 and K2 we obtain 

K1XK2=A1A2+B1(A2+A2')+c1(A2+A2'+B2') = 

A1A2+B1A2+B1A2'+C1A2+C1A2'+C1B2 

40 

(26) 

The matrix generated is a triangular one("-" indicates empty 

subclasses) and since the empty class is included in the elements for 

this Grouping (as with all groupings) the same grouping properties hold 

here as they did for Grouping III. 

Groupings V through VIII involve operations that are performed upon 

relations whose compositions are transitive rather than on logical 

classes. Asymmetrical relations denote ordered. differences between terms, 

e.g., 5<7=/= 7<5. 
No text

e. Grouping V - Addition of Asymmetrical Relations 

This grouping constitutes the logical addition (and subtraction) of 

asymmetrical relations (ordered ditferences within a series of 

relations). If the set {U,V,W,X,Y}of objects or classes and are 

linked by the transitive asymmetrical relation,----->, then we can use 

Figure 7 to illustrate this grouping. 

No text
No text

U ---a---> V ---a'---> W ---b'---> x·---c'---> Y 

----------b------------> I 
No text

---------------c ------- '-------.) 
--------------------d--------------------------> 

Figure 7. Asymmetrical Transitive Relations 

The small letters are the ordered differences indicated by the arrow 

and satisfy the transitive criterion. Thus, 
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u--a-->v + v--a'-->w = u--a+a'-->w = u--b-->w (27) 

or more simply: a+a'=b. 

1. Composition. From the example we can see that this property holds. 

2. Associativity. This property clearly holds. 

5. Special Identities. 

Tautology holds: a+a=a 

Absorption holds: a+b=b 

(28) 

(29) 

4. Reversibility. The inverse of an ordered difference relation, for 

instance W--b'-->X is its reciprical, X<--b'--W. Thus, 

(W--b'-->X)+(X<--b'--W) = W--o-->W or (W=W). (30) 

3. General Identity. This an equivalence relation, a relation of no 

difference, o or-. Thus, 

--b'--> + <--b'--

These formulae, 

--b--> + <--a'--

--d--) + <--b'c'--

= 

= 

= 

--o--> 

--a--> 

--b--) 

(31) 

(32) 

(33) 

are general examples of Figure 7. For instance, if X--c'-->Y means that X 

is smaller than Y, then Y<--c'--X means that Y is larger than X. 

It is important to note that the reversibility property takes two 
! 

different forms at this stage of intellectual development: inversion for 

classes and reciprocity for relations. 

f. Grouping VI - Addition of Symmetrical Relations 

This grouping encompases the additive compositions of different kinds 

of symmetrical relations (e.g., transitive, intransitive, reflexive, 

irreflexive, etc.). Flavell illustrates the workings of this grouping 

with a genealogical hierarchy in which x, y and z are male members. 

Figure 8 shows the relationships that are established. 
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Relation Symbol 

<--o--) 

<--a--) 

<--a'--> 

Relation Meaning 

identity 

"brother of" 

"first cousin to" 

Example(s) 

x<--o--)x (or x=x) 

x<--a--)y 

x<--a'-->z 

<--b--> "has the same grandfather as" x<--b--)y, x<--b--)z 

Figure 8. Genealogical Symmetrical Relations 

The difference relations are non-ordered since they are symmetrical. No text

Thus, <--a--) ("is not the brother of") can be constructed. 

1. Composition. Flavell notes that there are many formal' rules that 

.Piaget (1949, 154-7) em.ploys for additive composition. Three examples 

(from Flavell, 182-3) will suffice. 

.Example 1. (x<--a--)y) + (y<--b--)z) = x<--b--)z (4) 

·Here, x and y are brothers and x and z have the same grandfather. 

Example 2. (x<--a--)y) + (y<--b-->z) = x<--b--)z 
(35) 

Here, if o:ne of the brothers, y, does not have the same grandfather 
as z, then brother X does not eithe'r. 

2. Associativity Clearly associativity holds. 

Example 3. [(r<--a--)x) + (x<--a'--)y)] + (y<--a'-->z = 
No text

(r<--a--)x) + [ (x<--a '-->y) + (y<--a '--)z)] = 

r<--b--)z (36) 

4. Reversibility. To obtain the reciprocal ·operation of any relation, 

just permute the terms. Thus, the reciprocal of y<---a-->x is x<--a--)y. 

3. General Identity. This is x<--o-->x, or X=X Thus, 

(y<--o--)x) + (x<--b-->y) = x< - -o-->x 

5. Special Identities. 

(37) 

Tautology holds: (x<--a--)y) + (x<--a-->y) + x<--a:--->y (38) 

Resorption holds: (x<--a--)y) + (x<--b--)y) = x<--b--)y (39) 
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g. Grouping VII - Bi-univocal (one-to-one) Multiplication of Relations 

This grouping illustrates the one-to-one multiplication of two or 

more series of asymmetrical relations. The following example demonstrates 

the nature of this grouping. 

Figure 9 represents a set of glass tubes filled with lead and cotton 

whose sizes and weights vary independently. The letters represent weight 

(i.e., C is heavier than B which is heavier than A, etc.) and the 

subscripts represent volume (i.e., 3 is more voluminous than 2 which is 

larger than 1, etc.). Notice that the tubes are arranged horizontally by 

increasing size and vertically by increasing weight. The horizontal 

arrows represent volume differences and the vertical arrows weight 

differences. Note that all the items in one' row have the same volume and 

all the items in one column have the same weight. 

1. Composition. We can multiply a weight relation by a volume 

relation and obtain a product that is one of weight and volume 

simultaneously. 

Example 1. 

(A1--C1-->A4)X(A4|a2 B4) = (A1--c1-->|a2 B4) 
(40) 

Thus, if A1 is smaller than A4 at equal weight and if A4 is 

lighter than B4 at equal volume, then it follows that A1 is both 

smaller and lighter than B4 by the amount --c1-->|a2€ (Because 

groupings involve only intensive quantification, it is not possible to 

give exact numeric quantities here. 
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---------------increasing volume--------------> 

A1 --a1--> A2 --a'1--> A3 --b'1--> A4 --c'1--> 

|a2 a2 |a2a2 |a2a2 

B1 --a1--> B2 --a'1--> B3 --b'1--> B4 --c'1--> b2 1c2 

|a'2a'2 |a' 2 |a'a'2 |a'•' 2 

C1 --a1--> C2 --a'1--> C3 --b'1--> C4 --c'1:--> 

No text|b'2 No text|b'2 |b'2 |b'2
D1 --a1--> 

|c'c'2 
D2--a'1--> D3--b' 1-->D4--c'' 1-1-->

--- ---- ----b1-- --- ---> 

--- -----------c 1---. -·------' ------> 

Figure 9. Bi-univocal Multiplication of Relations 

4
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Example 2.(B1--b1-->|a2' C3) X (C3--b1'-->|b2' D4) =

(B1--c1-->|a2'+bz' D4) 

Example 3. (B1--b1-->|a2' C3) X (C3<--a1'--la2' B2) =

(B1--a1--> o|B2) = (B1--a1-->B2) 

where<---- means "smaller than" and means "heavier than." 

2. Associativity. This property obviously holds. 
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(41) 

(42) 

3. Reversibility. The reciprocal operation is logical division, which 

is analogous to Groupings III and IV. 

4. General Identity. This is the null difference for both weight and 

volume. 

Example 4. (A1--a1-->|a2 B2) (A1--a1-->|a2 B2) = 

(A1--a1-->|a2 B2) X (A1<--a1--|a2 B2) = 

(A1--o-->|o A1)

5. Special Identities. 

Tautology holds: 

Example 5. (A1--a1-->|a2 B2) X (A1-a1-->|a2 B2) = 

(A1--a1-->|a2 B2)

Resorption holds: 

Example 6. (A1--a1-->|a2 B2) X (A1--b1-->|b2 C3) = 

(A1--a1-->|a2a2 B2)

(43) 

(44) 

(45) 
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h. Grouping VIII - Co-univocal (one-to-many) Multiplication of Relations 

This grouping encompases the multiplcation of symmetrical and asym­

metrical relations. These relations define classes in hierarchies. The 

grouping is illustrated with Flavell's (186) examples. Figure 10 defines 

the relations in a family tree hierarchy. A, Band Care persons in the 

tree. 

Relation Symbol Meaning 

<--o--> is the same person as 

<--o '--> No text is the brother of 
symmetric 
relations <--a--> is the son of the same father as 

<--a'--> is the first cousin to 

<--b'--> is the grandson to the same 
grandfather as 

|a is the father of 

asymmetric |a is the son of 
relations 

|b is the grandfather of 

|b is the grandson of 

Figure 10. Co-Uni vocal Multiplication Of Relations 

1. Composition. We find that compositon here is "formally" analogous 

to composition in Grouping VII. Multiplication of an asymmetrical 

relationship by a symmetrical relation gives us a symmetrical-

asymmetrical product. 

Example 1. (A |a B) X (B<--a' '--)C) = (A|aa <--a' '-->C) (46) 

Result: A is the father of the first cousin of C, and thus the uncle 

of C. 



Multiplication of two or more symmetrical-asymmetrical products 

yields a symmetrical-asymmetrical product. 
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Example 2. (A<--a'-->|b B) X (B<--a'-->|a C) == (A<--a'--> c C) (47) 

Here, A is the first cousin to the grandfather of B. Bis the 

brother of the father of C and thus is C's uncle. Then A is .the first 

cousin to the great-grandfather of c. 

Flavell notes that Piaget's (1942, 182-195 ;1949, 164-166) rules for 

 composition in the Grouping are rather complex. 

2. Associativity. This property holds for composition among three or 

more products of the type (A<---->|B). 

3. Reversibility. Reciprocity is the inverse operation which is 

logical division. 

4. General Identity. Dividing a product by itself is .the general 

identity. 

Example 3. (A<--a'-->|a B) /(A<--a'-->| |a B) =: (A<--o-->|o A) (48) 

5. Special Identity. 

Tautology holds: 

Example 4. (A<--a'->|b B) X (A<--a'->|b B) = (A<-a'-->|b B) (49) 

Resorption holds: 
No text

Example 5. (A<--a--> |b B) X (A<--a--> |a C) == (A<--a-->|a C) (50) 

There exists a ninth grouping (of equalities) which occurs as a 

special case of all of the other eight groupings (Piaget, 1942, 33-34). 

This grouping involves the addition of symmetrical relations of 
No text

equality. 



i. Grouping IX - The Grouping of Equalities 

1. Composition. The form of this property is 

(A=B)+(B=C)=(A=C) 

2. Associativity. This property clearly holds. 

3. Reversibility. The inverse of an operation, (A=B) is (B=A). 

4. General Identity. (A=A) 

5. Special Properties. 

Tautology holds: (A=C)+(A=C)=(A=C) 

Resorption holds: (A=C)+(D=E)=(D=E) 
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(51) 

(52) 

(53) 

(54) 

This brief sketch of the logical groupings of concrete operational 

thought help put the various activities of the child into a more 

rigorous perspective. While, admittedly, the groupings are not models in 

the strict sense (they do not precisely describe the child's behavior), 

they do supply a conceptual framework within which experiments can be 

carried out and results interpreted. According to Flavell, Piaget views 

these logical groupings in three distinct lights. 

First he views them as a precise and parsimonious structural 
characterization of "ideal" cognition in the realm of 
intensive logical operatiors of classes and relations. 
Second, they constitute a general framework for interpreting 
certain global and elusive, but nonetheless important, 
qualities of concrete operations in contrast to preopertional 
thought. And finally, they serve as. a framework for 
investigating or "diagnosing for" mdre specific intellectual 
attainments in this area. (Flavell, 190) 

Numerous empirical studies have shown that concrete operational 

children do indeed behave to grouping specifications. These children are 
No text

systematic in their cognitive behavior unlike children in the pre­

operational stage of development. It appears that the older children's 

cognitive behavior derives from a coordinated system of schemes. Another 

hallmark of concrete operations is that the child's cognitions appear to 
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have achieved operational reversibility. Reversibility is the key to the 

system of cognition at this and the next stage of cognitive development. 

We briefly examine several empirical examples illustrating some of the 

groupings. 

i. Grouping I - Illustrative Example 

The concrete operational child is better at composing and 

decomposing hierarchical classes than the pre-operational child. The 

older child is more inclined to accurately combine elementary classes 

into supraordinate classes (B+B'=C) as well as decomposing higher-order 

classes into their subordinate classes. The older child better 

understands the relation between subclasses and their supraordinate 

class. A+A'----><----B means that A and A' are seen not only as 

individual classes but also simultaneously as members of B. The child is 

able to think of wholes and parts together. 

Thus, the older child is able to answer the wooden beads problem 

(see Item 5) correctly. He knows that B=wooden beads, A=brown beads and 

A'=white beads. See Inhelder and Piaget (1964).The structure looks like 

Figure 11. 

Figure 11. Wooden,Bead Experiment 
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j. Grouping II - Illustrative Exampl.e 

Piaget has shown that the concrete operational child can classify a 

collection of objects in serveral different ways indicating vicariance 

equations. Thus, C (the total collection of objects)=B+B'=B1+B11= 

B2+B2'= etc. See Inhelder and Piaget (1964). All the. different 

expressions with B1 s indicate. different classifications within C. 

[F]or example "(the French+ the non-French)= (the Chinese 
+ the non-Chinese)= (all men)." (Piaget, 1957) 

k. Grouping III - Illustrative Example 

If a concrete operational child is presented with a horizontal row 

of pictures of different colored leaves which meets a vertical row of 

pictures of green colored objects of different kinds, she is able to 

determine what picture should be placed at the intersection of the class 

of leaves and the class of green objects (a green leaf). See Inhelder 

and Piaget (1964). 

1. Grouping V - Illustrative Example 

Seriation is the key operation of this grouping. Here the child is 

given three or more objects of differing weight (and the same volume) 

and is asked to compare only two objects at a time and seriate them all 

by weight. The pre-operational child is ,often satisfied to create the 

correct series, A<B<C, by establishing A<B and A<C. He creates an 

incorrect series as often as he produces the correct one. This child is 

unsure of himself and feels he needs empirical justification to verify 

A<C knowing A<B and B<C. See Inhelder and Piaget ( 1949). 

The concrete operational child, on the other hand, is able to easily 

deduce A<C from A<B and B<C because she is able to view each element in 

an asymmetrical series in terms of direct(<) and inverse(>) 
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relational operations. The ability to grasp this reversibility also aids 

the child in the length-transitivity task (see Item 3). 

m. Grouping VI - Illustrative Example 

The pre-operational child is unable to grasp the symmetry property 

of symmetrical relations (if A----)B, then the inverse operation holds, 

B(----A). These children, unlike the concrete operational child, will 

affirm that while Xis their brother, X does not have a brother. See 

Piaget (1928.) 

n. Grouping VII - Illustrative Example 

The concrete operational child, when presented with 49 pictures of 

leaves which can be ordered by size (A to G) and by shade of color (1 to 

7), will arrange them in double entry table,(Figure 12). 

Larger 

------------------------------------> 
Al A2 A3 ...... 
Bl B2 B3 ...... 

Darker 
Cl C2 C3 ....... 
. • • . • . 

t : • .

Figure .12. Double Entry Table Of Leaf Size And Color 

Almost all of Piaget's conservation studies involve the manipulation 

of relations like this one: 

(A---->B) X (A | B) = (A----> |B) • 

Here» the equality of two objects along various dimensions (length, 

quantity, area, volume, etc.) is conserved in the face of a 

(55) 



52 

transformation of one. For instance, see Item 4. If A and A' are equal 

quantities of beads in glass jars and A' is poured into a wid.er beaker, 

(A'---->B), then the concrete operational child will conserve quantity 

because he will be able to multiply the relations "lower than" and 
No textNo text No text

"wider than" to see that the initial quantity is conserved (i.e., still 

equal) See Inhelder and Piaget (1964) • 

.According to,Flavell, no experimental evidence exists to verify 

Groupings IV and VIII. Piaget apparently invented these two groupings 

because "they describe logically possible structures, not.empirically 

discovered (as yet, at least) logical s.tructures." (Flavell, 1963, 189) 

o. Grotiping of Equalities - Illustrative Example 

Given three objects of equal weight but differing in size and color, 

the preoperational child, unlike the concrete operational child, will 

doubt that A=C when she empirically establishes by a balance that A=B 

and B=C. 

The closure of the concrete operational structure (represented by 

the nine groupings) brings about adult logical necessity and 

self-evidence to a limited but important degree (i.e., reversibility and 

hence conservation). However, full maturation must wait for the next. 

stage of intellectual development. 

3. Concrete Operational Limitations 

No textNo text
No text

No text

While this stage of intellectual development is a significant 

advance over the previous one, it does have its limitations. The 
No text
No text

pte-adolescent is limited to organzing only immediately given and 

perceived data. 
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The concrete operational child remains attached to empirical 

reality. What she is unable to do is to generate all of the possibilites 

inherent in a situation and then try to discover which, if any, of these 

possibilities occur in the actual data of the situation. It is in this 

paradigm that the real becomes a special case of the possible and is not 

achieved until the next developmental stage. 

Finally, the child at this stage is unable to exhibit a structural 

organization that is interwoven into an integrated system. He possesses 

two types of reversible operations, negation (or inversion) and 

reciprocity, which pertainto class and relational groupings, 

respectively. This child has not yet developed a system which can 

coordinate the two reversibilities and thus•allow him to solve 

"multivariable" problems. 

4. Transductive Reasoning 

With the onset of reversibility of thought comes the extinguishing 

of transductive reasoning. This is, at least, the conventional view. 

Transductive reasoning is neither true inductive nor true deductive 

reasoning, but proceeds from particular to particular. Flavell puts it 

very well: 
No text

Centering on one salient element of an event, the child proceeds 
irreversibly to draw as conclusion from it some other, 
perceptually compelling happening. Piaget makes the important 
point that the factual correctness of the child's conclusion ••• 
is by itself no guarantee that the mechanism for arriving at it 
was logical rather than transductive. (Flavell, 1963, 160)

The child who reasons transductively tends to juxtapose elements, 

thus making associative "and" connections. There is nothing that can be 

termed "implicative" or ''causal" between elements or events. As Piaget 

puts it: 



[J Juxtaposition is after all the sign of the complete absence 
of necessity from the thought of the child. The child knows 
nothing either of physical necessity ( the fact that nature 
obeys laws) nor of logical necessity (the fact that such a 
proposition necessarily involves such another). For him 
everything is connected with everything else, which come to 
exactly the same thing as nothing is connected to anything 
else. (Piaget, 1928, 60) 
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Thus, transduction is inference from particular to particular in the 

absence of any general law and logical rigor. General laws and logical 

rigor are absent because the possibility of logical reversibility is 

absent. Piaget describes transductive reasoning as an "elementary mental 

experiment" and claims that it is not yet 

••• a process of necessary reasoning; there is nothing necessary 
about the observation of facts so long as the elements of 
reality so observed are not dissociated to the extent of 
supplying the material for the construct;ion of a simpler and 
completely reversible reality. (ibid., 190) 

"Pure transduction" extends to age 7-8 and is thought to be 

extinguished by the onset of reversible operations. In the concrete 

operational stage, 7-8 to 11-12 years, some mental experiments become 

reversible and the beginnings of logical or theoretical necessity 

appears. The child now wants to connect two associated phenomena by a 

necessary relation rather than by simply recalling their common history. 

Complete (or full) reversibility of thought, however, does not occur 

until the formal operations stage of cognitive development. Thus, 

transductive reasoning is not fully extinguished and replaced by logical 

necessity until this stage is reached. Traces of, or regression to, 

transductive reasoning seems to occur late into formal operations 

(Seidman, 1980). This is an example of what Piaget would term, "vertical 

decalage." 
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Transductive reasoning has its roots in the egocentrism of the child 

and it is not until the child begins to lose this egocentrism that 

transductive logic begins to give way to logical necessity. Piaget's 

(1926; 1928) most detailed account of these roots and transductive 

reasoning appears in his "Studies in Child Logic": The Language and 

Thought of the Child (Volume I) and Judgement and Reasoning in the Child 

(Volume II), respectively. In the former work, Piaget shows that 

language reflecting the implicative relation is rarely used by younger 

children to mean logical implication. These works preceed Piaget's 

formalization of the developmental stages in mathematical terms and thus 

there is no formal model of transduction. 

It is well worth quoting a succinct and definitive statement on 

transductive logic and its relation to the development of logial 

necessity .. 

In short, transduction is a combination of elementary 
relations, but without reciprocity of these.relations amongst each. 
other, and consequently without the element of necessity that would 
lead to generalization. As soon, on the other hand, as relations 
become completely reciprocal, the fertility of relational 
multiplication knows no bounds, and generalization becomes 
possible .. Nay, more, this reciprocity is what explains the 
reversibility of all deductions and consequently the character of 
strictness and necessity that is peculiar to the reasoning process. 
(ibid., 197-8) 
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D. Psycho-logic Model II - The Structure of Formal Operations 

1. Hypothetico-Deductive Reasoning 

The hallmark of this period of intellectual development is the 

reversal of thinking between what is real and which is possible, in the 

child's approach to problems. 

Unlike the concrete operational child, the adolescent begins his 
consideration of the problem at hand by trying to envisage all 
possible relations which could hold true in the data and then 
attempts, through a combination of experimentation and logical 
analysis to find out which of these possibile relations in fact 
hold true. Reality is thus conceived as a special subset within 
the totality of things which the data would admit as hypotheses; 
it is seen as the "is" portion of a "might be" totality, the 
portion it is the subject's job to discover. (Flavell, 205-6) 

Hypothetico-deductive thought is deduction at maturity; matured from 

its naiye (concrete) state it will be used by ,the adolescent throughout 

adult life. This hypothetico-deductive reasoning frees the adolescent 

from her dependence upon the material world, because now she can 
No text

generate all possibilities in the form of hypotheses. 

[I]nstead of deriving a rudimentary type of theory from the 
emnpirical data as is done in concrete inferences, formal 
thought begins with a theoretical synthesis implying that 
certain relations are necessary and thus proceeds in the 
opposite direction. Hence, conclusions are rigorously 
d~duced f:rom premises whose truth status is reguarded only 
as hypothetical at first; only later are they empirically 
verified. (Inhelder and Piaget, 1958, ,251, emphasis mine) 

ForCTal thought (formal operations) entails propositional thought. 

The entities manipulated are no longer concrete data but assertions 

(propositions) which have these real world data as their content. If we 

can describe the concrete operations of classifying, seriating, 

corresponding, etc., as first-degree operations, then operations upon 

the results of first-degree operations may be considred as second-degree 

operations. The adolescent casts first-degree operations into proposi­

tions and operates upon these propostions with such logical operations 
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as implication, identity, disjunction and conjunction. 

Concrete operations are intrapropositional since they result in the 

con.tent of individual propositions. Formal operations are terned 

interpropositional because they are relations among propositions formed 

by concrete operations. Thus, empirical reality is subordinated, in this 

stage of development, to a system of hypothetico-deductive operations 

( that which is possible). 

The reversal of direction between the real and the possible is most 

clearly illustrated in the adolescent's propensity for subjecting 

problem variables to a combinatorial analysis. He wants to determine all 

the possible relations in the problem so that he may subject them to his 

reality tests to see which ones hold. He thus systematically isolates 

all individual variables and generates all possible combinations. 

The system within which hypothetico-deduction, propositional and 

combinatorial thought is couched is a structure that is vastly more 

mature than the precededing one. While inversion and reciprocity refer 

to two different systems (classes and relations, respectively) in the 

concrete operational stage, now they are combined in such a way so as to 

make this distinction unnecessary. The result is the ability of the 

adolescent to test the causal efficacy of a variable in an experiment. 

While negation (or inversion) entails the literal removal of a variable 

from operation, reciprocity entails only its neutralization. Reciprocity 

holds the variable's effert constant while a second factor is being 

varied. Consider this illustrative example from Flavell: 



[W]here the problem is to study the separate effects of kind 
of metal and length on the flexibility of a rod, the younger 
child finds himself at an impass; he cannot literally negate 
either variable, ie., work with a rod not made of some metal 
and not possessing some length. The older child uses the 
reciprocal operation with great profit here. He takes two 
rods of different metals but of the same length (here length 
is not negated, but neutralized or controlled - not lengths 
per se but length differences are annulled) in order to study 
the effect of kind of metal, arid two rods of single metal and 
different lengths to study the effect of length. (ibid., 210) 
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Unlike concrete operations, formal operations can be described by 

abstract models that are complete lattices and groups (rather than 

semi-lattices and groupings), integrated within one total system. 

2. Formal Operations Model 

We begin the model explication with the interpropositional 

operations. Since the adolescent is able to oonceive of all 

possibilities and then can observe and experiment to see which of these 

logically possible entities occur, he can make logical deductions about 

the causal nature of the system he is experimenting with. These 

hypothetical possibilities have a lattice structure. 

First we must examine the transition from concrete operational 

groupings of classes and relations to these propositional structures. 

Suppose A represents the occurrence of some event and A' the 

nonoccurrence of even A. B indicates that some variable is present and 

B' indicates that variable Bis not present. The concrete operational 

child can systematically observe and record some limited associations 

between event A and the variable B. Utilizing Grouping III he might 
I 

establish, on the basis of the data, that the followinag products occur: 

(AXB)+(AXB')+(A'XB)+(A'XB'). Thus, A occurs with B present and with B 

absent. In addition, A does not occur with B present and absent. 
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For the adolescent these associations have a propositional 

significance as opposed to a class-product significance. AXB' is a 

hypothetical assertion that two statements ("A occurs" and "Bis 

present") conform to the data and their truth can be jointly asserted at 

a given moment in time. 

The change from intrapropositional operations to interpropositional 

operations is best demonstrated by a change in symbolism. See Figure 13. 

Beth and Piaget (1966, 181 - hereafter also Piaget, 1966) makes it clear 

that he utilizes propositional symbols and symbolic logic concepts in a 

purely descriptive manner in order to make structural analysis easier. 

Intra propositional 
expression 

AXB 
AXB' 
A'XB 
A'XB' 

Figure 13. 

Interpropositional 
expressions (elements) 

p.q 
p.q 
p.q 
p.q 

Element Symbol 

(i) 
(ii) 
(iii) 
(iv) 

Intrapropositional And Interpropositional 
Expressions And Symbols 

Note, in Figure 13, that class symbols A and Bare replaced by the 

propositional symbols p and q, respectively. Also, class multiplication 

(X) No textand addition (+) are replaced by propositional conjunction (.) and 

disjunction (v), respectively. For example, (AXB)+(AXB')+(A'XB)+(A'XB') 

is now expressed as (i)v(ii)v(iii)v(iv). We can now see how the 

adolescent generates all possible combinations of these associations. 

Consider the truth-table for element (i) shown in Figure 14. This table 

can be represented schematically by Figure 15. 



p 9. p.q
T T T 
T F F 
F T F 
F F F 

Figure 14. Truth-Table For Element (i) 

. (i) p.q 

Figure 15. 

p p 

q T 

q 

Schematic Representation For Element (i) 
Note: blank cells indicate F 

Figure 16 shows the remaining representations for the other three 

elements (they are derived from their truth-tables). 

p p 

q q 

(iii) p.q 

q T q ___

p p 

q _________

(iv) p.q 

Figure 16. 

_ ____ T __ ...., 

Schematic Representations For Elements 
(ii), (iii), AND (iv) 

p 
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p 
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We may combine these four elements (or base combinations) of 

propostions in various ways. For instance, (p.q)v(p.q) means that 

either pis true and q is true, or pis true and q is false. This 

combination is represented in schematic form by superimposing (logical 

"or") elements (i) and (ii) from Figures 15 and 16. See Figure 17. 

p p 

(i) + {ii) (p.q)v(p.q) 
q T 

q T 

Figure 17. Schematic Representa,tion Of (i) + (ii) 

The other eleven combinations are shown in Figure 18. 



(i)+(ii) 

(p.q)v(p.q) 

(ii)+(iv) 

( p.q)v(p.q) 

T T (i)+(iV(i)+(iv) 

No text(p.q)v(p.q) No text
l 

T I T 

(iii)+(iv) EE 
(p.q)v(p.q) | T 

L
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(ii)+(iii) 

( p.q)v(p.q) 

( i)+( ii)+( iii) 

( p. q )v( p.q)v(p. q) 

( i )+(iii)+(iv) No text( i)+( ii)+( iv) No text(p.q)v(p.q)v(p.q) (p.q)v(p.q)v(p.q) . 

( ii)+( iii)+( iv) No text(p.q)v(p.q)v(p.q) 

(p.q)v(p.q)v(p.q)v(p.q) No text
(Note: This is the symbolic 
equivalent of the empty schematic) 

(i)+(ii)+(iii)+(iv) No text
(p.q)v(p.q)v(p.q)v(p.q)No text

Figure 18. Remaining Combinations Of Elements 
(Note: The proposition labels have been left off the schematics) 

Figure 19 gives each combination a combination number. 

Combination #

1 

2 
3 
4 
5 
6 
7 
8 

Combination 

0 (empty 
schematic) 

(i) 
(ii) 
(iii) 
(iv) 
(i)+(ii) 
(i)+(iii) 
(i)+(iv) 

Combination #

9 
10 
11 

No text12 
13 
14 
15 
16 

Combination 

(ii)+(iii) 
(ii )+(iv) 
(iii)+( iv) 
( i)+( ii)+( iii) 
(i)+(iii)+(iv) 
( i )+ ( ii )+ ( i V) 
(ii)+(iii)+(iv) 
( i)+( ii)+( iii )+(iv) 

Figure 19. Combinations And Their Corresponding Numbers 
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These 16 combinations are called "binary operations" because they 

derive from combining four unitary values p, p, q, and q in all 

possible ways (i.e., the 16 different possible functions derived from p, 

q combinations). The set of all possible combinations of propositions p 

and q form a lattice structure. The combination of the lattice elements 

and the propositional operation, logical "and" (.) gives a unique 

greatest-lower-bound (glb) for any two elements. The propositional 

operation, logical "or" (v) gives a unique least-upper-bound (lub) for 

any pair of elements. See Figure 20. This lattice is generated by 

operations which derive from three concrete operational groupings (I, II 

and III). See Piaget (1958, 289-93) for a complete explication. 

Figure 20. Lattice Structure For All Possible Binary 
Combinations, Of p, q 

Piaget expresses the 16 combinations as propositional relations. 

Consider pvq, which means "either p or q or both." What are the 

conditions under which pvq is true? Note that pvq is compatible with the 

truth of both p and q, (p.q); the truth of p and falsity of q, (p.q); 
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the falsity of p and the truth of q, (p.q); any two cases out of the 

three or all three (Piaget's interpretation of the last two conditions 

is explained below). 

The truth of pvq is, however, incompatible with the falsity of both 

p and q, (p.q). In Piaget's notation: 

pvq=(p.q)v(p.q)v(p.q) 
(56) 

but pvq/ (p.q), where "/" stands for incompatibility. 

In ordinary propositional logic it would be impossible to assert 

that two of the above combinations hold simultaneously. For instance, 

pvq=(p.q)v(p.q). If (p.q) is to hold then p and q must be true. But 

if (p.q) is to hold then p must be true and q must be false. Clearly, 

q cannot be both true and false simultaneously. 

Piaget notes that the new system of possibilities (Figure 20) 

resulting from the combinatorial operations on the four elements is no 

longer a simple classification system but a lattice structure based on 

the "structured whole" of n-by-n combinations. 

Piaget uses the symbols of propositional logic for purely 

descriptive purposes. He defends his special use of the v operation in 

the following quotation: 

For example, the subject will eventµally want to know whether two 
properties x and y are mutually exclusive (from whence 
x.y+x.y) or whether they are simply disjuctive although they 
may appear together (from whence x.y+x.y+x.y). When he asks 
such a question, the subject's reasoning deals not with reality 
directly but rather with reality as a function of possibility. Here 
addition (+) is no longer an addit,ion of possibilities, for the real 
cases cannot always occur simultaneously. This is why the 
fundamental operation of propositional logic is noted v in the sense 
of "or': thus xvy signifies "either x.y is true, or x.y, or 
x.y, or two of these cases out of three, or all three." (Inhelder 
and Piaget, 1958, 292) 
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Piaget's logic is not so easily disposed of and we shall return to 

examine some of its idiosyncrasies. As Ennis (1975) points out, it 

appears that Piaget means a special sort of "conjunction" when he refers 

to v. The above Piaget quote will due for now but as we shall later see, 

it is anything but clear. 

Piaget uses the symbol:>, to stand for material implication (the 

material conditional). I shall use the symbol-->, in this text. Thus, 

"if p then q" means that the relationship could hold in these cases: 

both p and q are true, (p.q); pis false but q is true, (p.q); both p 

and q are false, (p.q). Note that p-->q is incompatible with the 

truth of p and the falsity of q, (p.q). Thus, 

p-->q=(p.q)v(p.q)v(p.q)

but (p-->q )/(p.q). 

(57) 

Note that p-->q is combination number 14 in Figure 20. Combinations 

12, 13 and 15 can be replaced with their equivalent implication 

notations. See Figure 21. Similarly, combinations 6 through 11 can be 

replaced by equivalent forms. If we look at combination 6 we see that 

true regardless of the truth value of q. Thus,, combination 6 becomes, 

In combination 9, observe that when p is true q is false and that when 

is false q is true. Thus, combination 9 becomes p/q. Figure 20 may be 

rewritten (without the connecting lines). See Figure 21. 

is 

P• 

p 



p and q 

12 13 

p q p q 

6 7 

p q 

2 3 

p.q p.q 

16 
are independent 

14

p q 

8 

p=q 

4 

p.q 

1 
null 

9 

p/q 

15 

p .q 

10 11 

q p 

5 

p.q 

Figure 21. The Sixteen Binary Combinations (Relations) 
Expressed As Propositional Relations (from Boyle, 83) 
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Higher order relations and operations are possible and although 

Piaget claims that adult thought makes use of them he never explicitly 

considers them and neither will I. 

An example is in order (from Inhelder and Piaget, 1958, Chapter 7). 

Item 13. Combinations The subject is given four identical beakers 
containing (1) dilute sulphuric acid, (2) water, (3) oxygenated water, 
(4)' sodium potassium and (g) potassium iodide All liquids are No text
col.orless. In addition, two other beakers (i) one containing dilute 
sulphuric acid and oxygenated water (i.e . , (1)+(3)) and (ii) the other 
containing water are present. Once again, (i) and (ii) are colorless. 
The experimenter now adds sereral dtops of g to beakers (i) and (ii). 
The liquid in (i) turns yellow while that in (ii) remains colorless. 

It is· the subject's task td mix the contents of beakers 1 through 4 
in. such a manner so as to obtain a yellow color when g is added. He must 
mix 1 and 3 but not add 4 because sodium thiosulphate cancels the 
effects of potassium iodide leaving the liquid colorless. Thus, 
((1+3+g)+4) reverses the action (i.e., reciprocity). 

Concrete operational children are limited to simple multiplicative 
factoring ( Grouping III). They multi ply each of the beakers, 1 through 4 
by g in an unsystematic trial and error method. The formal operational 
child, on the other hand, behaves differently. Let p stand for the 
presence of color, q for beaker 2 (i.e., the water). We can describe the 
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ef feet of adding 2 to ( 1+3+g). The adolescent may note tha·t p.q occurs, 
i.e., the yellow color occurs when water is added to the mixture 
(1+3+g). The concrete operational child who is not thinking in terms of 
the totality of all possibilities might deduce, p--)q. The adolescent on 

. the other hand will not make this deduction on a single observation out 
No textof the logical totality. The adolescent, upon further experimentation, 
will discover: p.q, p.q, p.q. He thus obtains the 
combination: {p.q)v(p.q)v(p.q)v(p.q). He can then conclude 
that pand q are independent. 

If we now let q stand for beaker 4, we get: (p.q)v(p.q)•, 
indicating that color is present in the absence of 4 and that color is 
absent in the presence of 4. Clearly, p/q. 

If, for instance, further experiments establish the presence of p.q,. 
p.q, p.q and the nonexistence of p.q then we would have 
(p.q)v(p.q)v(p.q) and could conclude, p-->q. 

3. The INRC Group 

The interpropositional operations described above have group as well 

as lattice properties. Certain aspects of cognitive behavior demonstrate 

a cognitive structure with properities of a four group (group of four 

transformations the "Vierergruppe" or "Klein group"). A set of four 

transformations, I, N, R, and C are the elements of the group under the 

combination (or multiplication) operation. The transformations are: 

I. Identity (I). Nothing in the proposition upon which this 
transfomation is performed is changed. 

Example 1. I(pvq)•pvq; I(p.q)=pq; I(p--)q)==p--)q. 

2. Negation (N). The negation of a proposition is simply the 
proposition that it is incompatible with-. . 

Example 2. N(p-->q)=p.q; N(pvq)=p.q; N(p.q)=pvq. 
Note that except for-->, all assertions (propositions) become negations 
and all negations become .assertions. All conjunctions are changed to 
disjunctions and visa versa. 

No text3. Reciprocal (R). Here assertions (propositions) and negations are 
merely permuted. All connectors remain unchanged. 

Example 3. R(pvq)=pvq; R(p.q)=p.q; R(p-->q)=p.q= q--)p 

4. Correlative (C). Here conjunctions and disjunctions are permuted 
but assertions and negations remain unchanged. 



Example 4. C(pvq)=p.q; C(p.q)=pvq; C(p-->q)=p.q because 
p--)q==pvq=(p.q)v(p.q)v(p.q) and since 
p-->q and pvq are both /p.q thus 

C(p--)q)=C(pvq)=p.q. 
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The group properties of these transformations are shown below (no 

formal proofs of these propertries are given). 

1. Composition. It is easily shown that multiplication of any two or 
more transformations results in a singular transformation of the four 
group. 

Example 1. INR(pvq)=C(pvq)=p.q (thus, INR=C) 

2. Associativity. It is easily shown that this property hOlds. 

Example 2. IN(pvq)=NI(pvq)=p.q (thus, IN=NI) 

3. General Identity. I is the identity element. 

Example 3. IR=R; IC=C 

4. Inverse. Each element is its own inverse. 

Example 4. RR=l; CC=I 

Figures 22 and 23 illustrate g;oup of four transformation 

relationships. 

pvq R pvq 

No textNo text
No textl No textNo text No text

p.q No textR No text p.q 

Figure 22. Group Of Four Transformations 

p->q

i~ 
C 

No text
p.q 

Figure 23. Another Group Of Four Transformations 
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Thus, in the formal operational stage of development, we see that 

negation (inversion) and reciprocity are elements of the same system and 

that this· system, the group of four transformations, is closed under 

composition. Item 14 illustrates bow the logical INRC system can be 

applied to a physical system (from Inhelder and Piaget, 1958). 

Item 14 - Balance Arm. Suppose we have a simple two-armed balance 
and some weights (e.g., 5, 10, 15 and 20 units) that can be inserted in 
holes spaced regularly along both of the arms. The downward pull on the 
balance arm is the product of the weight and its distance from the 
fulcrum point (i.e., the moment of inertia). By asking the subject to 
explain and predict the outcomes of arranging different combinations of 
weights and distances we can investigate the growth of understanding of 
the pricniples of reasoning. 

Let p stand for an increase and pa decrease of weight on ann A. 
Let q stand for an increase and q a decrease of distance on A. We say 
that p', p', q', q' stand for analogous properties acting on arm 
B. If the balance is put out of equilibrium (in a downward direction) by 
an action on arm A we can invert the action'by either decreasing the 
weight (p) or by decreasing the distance (q). Thus, · 
N(p.q)=pvq. 

This leads to the problem that if the balance is put out of 
equilibrium by p and q (p.q) it could be put back into equilibrium by 
either p or q alone or both p and q together. Thus, p or q 
acting alone would not be true negation. This problem does not, however, 
compromise the illustrative value of this Item. See Parsons and Flavell 
for a full explication of this problem. 

Alternatively, we could restore the equilibrium by the weight and 
distance on arm B, (p' . q'). This is reversal by reciprocity. But, 
increased weight and distance on A is equivalent to decreased weight and 
distance on arm B. Thus, p'.q'=p.q, and R(p.q)=p'.q'. 
We can alter the effect of p.q on arm A by decreasing the weight on arm 
A, or by decreasing the distance on A, pvq. But, the effect of 
decreasing these weights and distances on A is the same as increasing 
them on B, pvq=p'vq'. 
Thus: I(p.q)=pq; R(p.q)==p'.q'; N(p.q)=p\fq; C(p.q)=pvq. 

It should be noted that the adolescent, like his concre.te 

operational counterpart, remains unaware of the formal symbolic logic 
No text

involved in describing the algrebraic structures. 
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In the formal stage of development, we witness not merely a 

juxtaposition of inversions and reciprocities but a synthesis, a fusion

of both into an integrated whole. As Piaget puts it: 

Henceforth every operation will at once be the inverse of another 
and the reciprocal of a third, which gives four transformations: 
direct [identity], inverse, reciprocal, and inverse of reciprocal, 
the latter also being the correlative (or dual) of the first. 
(Piaget, 1969, 138-9) 

Item 15 - Implication. This is an example of what Piaget terms, 
implication (p--)q). An Adolescent observes an object that keeps 
stopping and starting and also notices that the stops are accompanied by 
the lighting of a bulb. His first hypothesis is that the light (p) is 
the cause or the indication of the stops (q), thus, p--)q. We know that 
according to Piaget's logic: p--)q=(p.q)v(p.q)v(p.q) but that 
p-->q/p.q. Thus, to confirm the hypothesis (he has already confirmed 
p.q) the adolescent must discover whether p.q occurs. If it doesn't 
then the hypothesis holds, otherwise, the hypothesis is discorifirmed. 

He may also wonder whether the light is caused by the stop, q-->p, 
the reciprocal of p-->q. He must now discover whether q.p holds in 
order to confirm or. disconfirm this hypothesis. Note that p.q is the 
inverse of p-->q and at the same time the correlative of p-->q. 
Similarly, p.q is the inverse of p-->q and the correlative of q-->p. 
In the first case the object stopping each time the light lights is 
compatible with its sometimes stopping for another reason. And in the 
second case, if every time there is a stop the bulb lights (q--)p) there 
can be lights without stops. Note that if q-->p is the reciprocal of 
p-->q then p.q is the reciprocal of p.q. See Piaget (1969, 139). 

While there are a number of logical and Piagetian idosyncratic 

problems with Item 15, it does serve to illustrate that while the 

adolescent is not aware explicitly of any logic he nonetheless behaves 

as if he is capable of manipulating hypotheses according t.o the INRC 

group. These transformations of propositional relations then, provide a 

model for describing the adolescent's problem solving thought processes. 

Note that the transformations are realty third degree operations since 

their contents are already second degree operations. The child at this 

stage of development is now fully freed of the necessity of physical 

action and can truly think and manipulate free from the restrictions of 

concrete reality. 



71 

4. Reflective Abstraction and the Transition from Concreie to Formal 
Operations 

Since we approach stage development from a structural framework we 

can obseve just how the phenomena of reflective abstraction gives rise 

to the final stage of cognitive structures. This transition is usually 

described from an equilibrium standpoint (Flavell; Inhelder and Piaget, 

1958). Piaget briefly describes it from a structural standpoint (Piaget, 

1966) and I shall draw from that description. 

The process that characterizes the transition from the concrete. to 

formal operations stage can, according to Piaget, be generalized. To go 

from one structure to the next one must abstract operational relations 

from the antecedent structure in order to generalize them in the·new 

one. These "reflected" relationships continue the old operations in a 

new: "plane." Thus, we have continuity and novelty, two necessary 

ingredients in the transition. Finally, these new operations permit 

heretofore separated systems to be combined into new structured wholes. 

This transition is important for it now allows the substitution of 

deduction for experience. Deduction, at this high level, now is able to 

deal with pure hypotheses whereas in the previous level it was 
J, 

"shac.keled" by concrete objects and sense experience. 
No text

Concrete operations form a limited'system arising out of the 

structure of groupings and which function only when objects in the 

environment are manipulated. The fundamental deductive concepts marked 
No text

by concrete operations are the concepts associated with conservation. 

From the funcitonal viewpoint, these same concrete operations 
exhibit a general limited character which is very instructive: 
they only fucntion in the presence of objects, when the latter 
are manipulated, or supported by representations, but only 
·insofar as the latter directly continue the possible manipu­
lations and they become useless when the objects are replaced by 
simple hypotheses stated verbally. (Piaget, 1966, 239) 
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Thus, the manipulation of objects is a necessary condition for these 

first conservatory deductions to occur. The deductions are based upon 

the transitivity of overlapping classes or on the transitivity of 

symmetrical or ordered asymmetrical relations. 

The formal stage is marked by the freeing of content from reasoning. 

The formal operational child, according to Piaget, is now able to 

"reason deductively about simple hypotheses stated verbally" (ibid., 

240). The appearance of hypothetico-deductive reasoning is caused by new 

reflective abstractions: the constructLon of new operations or 

operations based upon preceeding ones from the content of,lower 

operations. 

This abstraction reconstructs new operations from elements that are 

"reflected" form the lower level to the higher plane. By generalizing 

classification, the adolescent can construct the combinatorial system by 

classifying all the classifications (he constructs operations relating 

to antecedent operations). These operations upon operations provide the 

psychological novelty of hypothetico-deductive operations. For instance, 

see Item 15. These new operations permit us to combine the two 

heretofore unrelated systems containing ;inversion and reciprocity. The 
No text

No text

group of four transformations, INRC, does this on the formal level of 

operations. 

S. Deductive Necessity 

Since the reasoning encountered at the formal operations state of 
No text

cognitive development is truly deductive in character we may now speak 

of the maturity of what we have been calling "logical necessity" and 

"self-evidence." This logical deduction is due to the deductive closure 

of the formal system under the 16 binary operations and the INRC group. 
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The set of all possibilities allows the adolescent to utilize deductive 

reasoning in a more mature sense, freed from materialistic constraints. 

Piaget notes that logically " ••• formal possibility is the required 

correlate of the notion of deductive necessity." (Piaget, 1958, 257) 

To Piaget, any assertion that has a reference to empirical reality 

only, cannot be considered derived as a deductive necessity because the 

assertion would be true or false as it corresponds to the factual 

situation only. Whereas, a deduction that is logically derived correctly 

from a hypothesis or from data assumed hypothetically, is formally 

necessarily true independent of the hypothesized values. 

The connection indicated by the words "if ••• then" (inferential 
implication) links a required logical consequence to an 
assertion whose truth is merely a possimility. This synthesis 
of deductive necessity and possibility characterizes the use 
of possibility in formal thought, as opposed to 
possibility-as-an-extension-of-the-actual-situation in concrete 
thought ••• (ibid., 257-8) 

The synthesis of inversion and reciprocity in formal operations 

(operational reversibility) insures the deductive closure of the system 

and hence deductive necessity. The INRC group illustrates that the 

structures that formal thought elaborates are psychologically conserved. 

These structures are used, then, as "deductive instruments." 

Regarding Item 14, the formal operational subject will now be 

deductively certain of the reversible compensations on the balance arm 

and will not have to actually perform the experiment. In contrast to the 

preceeding stage, the operational form is entirely dissociated from 
No text

throught content and reasoning by implication, exclusion and 

disjunction, etc., is now possible. To have a combinational system 

presupposes a "structured whole" and thus a lattice structure 

characterized by the laws of of reciprocity. 
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6. Problems of the Model 

While I have made considerable effort to describe Piaget's models of 

cognitive development and one of the mechanisms of transition from one 

stage of development to the next (i.e., reflective abstraction), it is 

not my intention to extensively analyze the controversial points. 

However, one particular criticism of Piaget's model of formal reasoning 

should be considered. There appears to be little in the way of criticism 

of the concrete operational model {Model I) and it has proven to be a 

useful model and framework within which to describe and interpret 

various behaviors of middle childhood. 

Figure 24 is a compact illustration of Piaget's system of sixteen 

binary-operations as presented in Inhelder and Piaget (1958). I have 

adapted it from Ennis (1975). In the material implication interpre­

tation of propositional logic, p-->q=(p.q)v(p.q)v(p.q) means 

that at least one of the three conjuctive elements holds true. Since 

p-->q=pvq, the truth of q or the falsity of p establishes the 

material implication. 

But as Ennis (1975), and Parsons (1960) before him, point out, 

Piaget appears to claim that the child establishes p-->q only when he 

shows that all three conjuctions hold and that the conjuction p.q 

(the inverse) does not. Piaget is not always clear on this matter (see 

Items 13 and 14 which are taken from Piaget). Of course, the standard 

interpretation of propositional logic ~ill not tollerate the 

contradictions generated by Piaget's interpretation. Either pis true or 

not true, never both! 

Piaget tries to circumvent these problems by treating these 

propositional symbols as propositional functions (propositions 



Piaget's Name and Number 

1. Complete affirmation 

2. Negation of complete 
affirmation 

3. Conjunction 

4. Incompatability 

5. Disjunction 

6. Conjunctive negation 

7. Implication 

8. Nonimplication No textNo text

9. Reciprocal implication 

10. Negation of reciprocal 
implication 

11. Equivalence 

12. Reciprocal exclusion 

13. Affirmation of p 

14. Negation of p 

15. Affirmation of q 

16. Negation of q 

Corresponding Piaget's 
Constructed Number from Logical 
combination Figure 19 Shorthand 

- - --p.q V p.q V p.q V p.q 16 p*q 

nothing 1 0 

p.q 2 p.q 

- - --p.q V p.q V p.q 15 p/q 

p.q V p.q V p.q 12 p V q 

-- --p.q 5 p.q 

No text-
14 p.q V p.q V p.q p q 

- 3 -p.q p.q 

- --p.q V p.q V p.q 13 q p 

-p.q 4 p.q 

·--p.q V p.q 8 p q or p = q 

- -p.q V p.q 9 p vv q 

-p.q V p.q 6 p[q] 

- -- p[q] p.q V p.q 11 

-p.q V p.q 7 q[p] 

- -- q[p] p.q V p.q 10 

Figure 24. Piaget's 16 binary operations 
Adapted from Ennis (1975) 

7
5



76 

containing variables). While he does not explicitly describe them as 

such in his 1958 work, Piaget does refer, apparently, to propositional 

functions in a later work. 

Let us first describe them (in order to understand them) in the 
language of propositional functors •••• Let there be a functor, 
for example p-->q, of which the normal disjunctive form is 
p.qvp.qvp.q. (Piaget, 1966, 182). 

Piaget's treatment can be made meaningful by the addition of 

existential and universal quantifiers. Thus, if at least one case of the 

conjunction is present, then the conjunction may appear in the 

disjunction (p.q means the existence of at least one case such that p 

and q). Thus, we should interpret the logical "or" symbol (v) as "and." 

We can now easily interpret Figure 24. Choose the logical operator 

we are interested in from Column l; the cases that must exist are shown 

in Column 2; those cases which must not exist (are excluded) are the 

ones missing from Column 2. 

One of Ennis's most cogent objections to Piaget's model is that in 

some experimental situations it would be physically impossible to 

demostrate the existence of certain cases and that this should not count 

against verifying an implication, for instance. He is, of course, 

correct in noting the impossibility of verifying the existence of 

certain cases, but Piaget might reply that: 1) either the reasoning 

model does not fully apply in these situations or that 2) what is 

required is the mere possibility of the existence of such a case rather 

than the actual existence. 

As for 2), Ennis counters that it seems quite '"unreasonable" to 

require the existence of a case for p.q in order for p-->q to hold. 

Also, suppose that it is physically impossible to verify the case p.q, 

but we can assume that the case is at least possible. Then, Ennis 
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claims, anything is possible and the "Piagetian requirement" under the 

interprettation of the existence of of possibilities becomes vacuous. 

Another objection appears in the clash between the affirmation of p 

and q, simultaneously. To affirm pis to deny (according to Ennis's 

interpretation of Piaget's use of propositional logic) the existence of 

a case fitting p.q and to affirm q is to require the existence of at 

least one case fitting p.q. Thus, to assert both p and q is to 

generate an inconsistency. 

Also, to assert p-->q is to deny the existence of a case fitting 

p.q and to assert q--)p is to deny a case fitting p.q Which is in 

turn required in p-->q. Notice that q--)p also requires p.q thus 

making p-->q and q-->p incompatible. However, the biconditional, 

p<-->q requires the existence of at least one case fitting p.q 

and p.q but denies the existence of cases fitting p.q and 

p.q. 

Ennis also objects to the apparent overgeneralization caused by 

using propostional functions. Can the subject really justify inductive 

leaps from only a few cases to a generalization, say p-->q?Piaget might 

claim that the generalization only applies to the data already gathered 
I 

about the problem but Ennis counters ;by asserting that we are then left 

unable to deal with future expectations. This seems to be a weak conter­

argument for there is .no need to go beyond the particular experiment at 

hand (Piaget does not to do this in his 1958 work). However, to posi­

tively "establish" the non-existence (suspending ontological consider­

ations) of the excluded case(s), say p.q in p--)q, is an inductive

leap apparently justified only if the data can be exhaustively examined 

in a limited domain of discourse and data, of course. 
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While Piaget's formulation of the formal operational stage of 

development is not without apparent error, ambiguity or dispute, it is 

tollerably able to describe an important stage of cognitive development 

(see Elkind, 1961). Piaget's formalization is not meant to be a 

normative account of stages but a descriptive one. 

The INRC group serves to adequately account for the notions of 

negation and reciprocity combined together within a single system. 

Piaget's discussion of these two forms of reversibility is formulated in 

terms of the INRC group as applied to propositions. Thus, he first 

translates the various actions of the system into propositions and then 

seeks to show that they conform to the notion of the four-group. I have 

followed this paradigm in my presentation of ,INRC. 

While Piaget's attempts to describe the structures of cognitive 

development and their ontogenesis are far from faultless, they do at 

least provide a framework for empirical research in this area. 

E. Children's Ability to "Handle" Propositional Logic: Piaget's View 

Through all that has proceeded, it is possible to lose sight of the 

important notion that it is the character of the problem itself that 

will determine whether its solution will promp~ formal reasoning or 

whether it can be solved in terms of an earlier operational level. For 

example, each of the experiemental situations in Inhelder and Piaget 

(1958) is an instance of a concrete situation whose solution cannot be 

reached by concrete operational structures. The situations are concrete 

presentations of a formal problem. 

Let us see just how a purely verbal problem requiring formal reason­

ing for its solution can be reformulated so that it can be correctly 

answered by concrete operations. Consider the following two items. 
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Item 16 - Verbal Problem. "Mary is fairer than Alice; Mary is darker 
· than Susan; which of the three is the fairest?" 

We noted in the Illustrative Example for Grouping V that the 
concrete operational child is able to handle the two relations, "more x 
and "less x" (serial ordering of asymmetrical transitive relationships) 
and it would appear that no other factors other than the coordination of 
these two relations are involved in this Item. However, this problem is 
not solved before the formal operations stage. Why? 

No textHere, the subject must be able to extract the relational 
significance of the two statements from what Lunzer terms "the pictorial 
evocative connotation of the linguistic forms into which they are.cast" 
(Lunzer, 1963, 587). Thus, the solution to the problem necessitates the 
examination of the formal and logical implications of the propositons, 
and not only their content. Lunzer believes that the solution turns on 
the "explicit" or "implicit" understanding of the equivalence: "Mary is 
fairer than Alice = Alice is darker than Mary." Apparently, children 
will tend to interpret "fairer" and "darker" in an absolute sense and No text
will see Alice as "fair," Susan as "dark" and Mary as both "fair" and 
"dark." Thus, they erroneously conclude that Alice is the fairest. 

Item 17 - Another Verbal Problem. Here is a version of Item 16 in a 
simpler form. "Mary is fairer than Alice; Alice is fairer than Susan; 
which of the three is fairest?" This form •of the problem can be answered 
correctly by the concrete operational child. Why? Because, according to 
Piaget, it is sufficiently close to the concrete problem of serial 
ordering that the child can solve with concrete apparatus. The concrete 
serial ordering of shades should be no more difficult than setting 
lengths in series. Thus, if the verbal problem is "close" to the 
concrete problem, it can be solved by the concrete operational child. In 
Piaget's words: 

However, this is not the whole problem, for all verbal thought is 
not formal and it is possible to get correct reasoning about 
simple propositions as early as the 7-8 year level, provided that 
these propostions correspond to sufficiently concrete 
representations. Even if the content of the complextion problem 
[Item 16] requires nothing more than senial order operations, the 
fact that it cannot be solved in exclusively verbal terms until 
several years after the child can solve it withthe aid of 
physical props shows us that some other factor is at work here. If 
we consider the mental images involved in the problem we see how 
difficult it is for the subject to set up the data in his own mind 
(because only the relations are given). The result is that the 
subject is unable to translate the data into representational 
imagery and has to formulate them. in exclusively hypothetical 
terms if he is to see the necessary consequences. (Inhelder and 
Piaget, 1958, 252) 



80 

Thus, to claim, as some do (see Ennis 1975, 1976) that only formal 

operational children can deal with verbal propositions, is incorrect. We 

see that both concrete and formal operational children can solve certain 

kinds of problems expressed in verbal propositional form. But can a 

child "handle" (reason correctly about) verbal propositional logic 

statements of the type: "If Mary is in school, then Paul is home. Mary 

is in school. Therefore, Paul is home?" Clearly, these propositional 

statements together form a logical argument whose conclusion follows 

deductively from the premises (logical necessity). Is it only the formal 

operational child who is able to handle this logic? If so, to what 

extent? 

Piaget cautions against using linguistic criteria alone to determine 

whether a child is reasoning with formal operations (see for example, 

Inhelder and Piaget, 1958, 279) but offers no guidance as to whether 

concrete and/or formal operational children can reason correctly with 

conditional logic propositions (i.e., understand the principles of 

conditional logic). Recall that it is the character of the problem that 

will prompt the need for a particular level of reasoning. Thus, this 

seems to be a question that admits of an empirical answer - theory can 
• I 

take us only so far. 

F. Summary 

In this report I have outlined Jean Piaget's theory of the onto­

genesis of logical necessity and the concommitant notion of self­

evidence. We saw how the child progresses by the processes of adaptation 

and reflective abstracton from a neonate unable to distinguish self from 

the world, to an active agent capable of interiorizing actions into 

operations, to an individual able to operate upon concrete objects, to 
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the stage where she can operate upon concrete operations (formal 

operations). Along this developmental path can be seen the successive 

levels of logical necessity. I have illustrated formal models that 

describe the concrete and formal operational stages and have touched 

upon. some of the problems associated with one of the models.
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