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PRIMER ON  
USING NEURAL NETWORKS FOR FORECASTING  

MARKET VARIABLES 
 
 
 

Abstract  
 
 
 Ability to forecast market variables is critical to analysts, economists and investors. 

Among other uses, neural networks are gaining in popularity in forecasting market variables. 

They are used in various disciplines and issues to map complex relationships.  

 We present a primer for using neural networks for forecasting market variables in 

general, and in particular, forecasting volatility of the S&P 500 Index futures prices. We compare 

volatility forecasts from neural networks with implied volatility from S&P 500 Index futures 

options using the Barone-Adesi and Whaley (BAW) model for pricing American options on 

futures. Forecasts from neural networks outperform implied volatility forecasts. Volatility 

forecasts from neural networks are not found to be significantly different from realized volatility. 

Implied volatility forecasts are found to be significantly different from realized volatility in two 

of three cases. 

 

Keywords: Neural networks, Volatility forecasting, Implied standard deviation, Realized standard 

deviation. 
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PRIMER ON  
USING NEURAL NETWORKS FOR FORECASTING  

MARKET VARIABLES 
 

 

INTRODUCTION 

 Accurate forecasting of market variables is critical to economists, analysts, and investors. 

This task gets complex as world financial markets get increasingly interconnected and 

interdependent. This complexity has created opportunities for neural networks which have the 

ability to explore interrelationships among a large number of market variables. Hence they are 

gaining popularity.  

Though neural networks have been around for almost half a century, only since the late 

1980s they have gained significant use in scientific and technical use. They have found 

applications in wide ranging fields (Exhibit 1).  

Neural networks have gained use in economics and finance more recently. The networks 

have been used in issues like economic prediction, stock picking, portfolio construction, 

identifying insider trading, analyzing corporate financial health, bond risk assessment, 

recognizing financial distress, detecting credit card fraud, improving real estate appraisal, 

identifying good credit or insurance candidates, exchange rate prediction, valuing options, 

commodity trading.  

Back in 1990, Hawley, Johnson and Raina identified various potential uses of neural 

networks in corporate finance, financial institutions and investments. In the last fourteen years, 

the extent of use of the networks in finance has indeed increased. Exhibit 2 presents a list of 

research works on the application of neural networks in economics and finance. If the exhibit is 

an indicator, the research works involving the technology have been devoted predominantly to 

two areas: financial distress prediction (about 20 percent of the listed studies) and prediction of 
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stock price/stock index (about 12 percent). Neural networks have yet to see other potential 

applications in financial economics. Hawley, Johnson and Raina (1990) mention a number of 

potential uses of neural networks on which academic research is yet to be seen. Exhibit 3 lists 

some of the areas in which the efficacy of using neural networks could be researched. For 

example, the technology can be applied to corporate finance (financial simulation, prediction, 

evaluation, etc.), IPO pricing, identifying arbitrage opportunities, security risk profiling, locating 

tax evaders, etc. Evaluation of uses in these areas is yet to be seen. 

 

NEURAL NETWORKS IN FINANCIAL APPLICATIONS     

The general finding from the studies in Exhibit 2 by and large is that neural networks have 

promising applications in many fields of economics and finance.  

 Many of the studies on early warning failure prediction studies compared the predictive 

powers of neural networks and conventional statistical models like multiple discriminant analysis 

and logistic regression. A number of studies found neural networks to be superior to these models 

(e.g., Coats and Fant, 1993; Lenard, Alam and Madey, 1995; Fletcher and Goss, 1993; 

Salchenberger, Cinar and Lash, 1992). Yet other studies found both approaches yield balanced 

degree of accuracy (Altman, Marco and Varetto, 1994; Boritz, Kennedy, de Mirande e 

Albuquerque, 1995; Yang, Platt and Platt, 1999). Boritz and Kennedy (1995) show that the 

performance of neural networks is sensitive to the choice of variables selected and that the 

networks cannot be relied upon to evaluate and focus on the most important variables. Zurada, 

Foster, Ward, and Barker (1998) find neural networks are not superior to logistic regression 

models for traditional dichotomous response variables, but are superior for more complex 

financial distress response variables.  
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 Neural networks have been employed with success to make stock market predictions and 

stock selection (e.g., White, 1988, Yoon and Swales, 1991; Kryzanowski, Galler and Wright, 

1993; Rhee, 1994, Gencay, 1998; Qi, 1999; Qi and Maddala, 1999). The networks have been 

used to determine optimal buy and sell timing for an equity index (Kimoto, Asakawa, Yoda, and 

Takeoka, 1990) and recognize a specific price pattern, such as the Japanese “candlestick” triangle 

(Kamijo and Tanigawa, 1990). 

Neural networks have been found to generate improved risk ratings of bonds (Dutta and 

Shekhar, 1988; Moody and Utans, 1991; Surkan and Singleton, 1991; Kim, Weistroffer and 

Redmond, 1993; Maher and Sen, 1997) and useful in mortgage risk assessment (Collins, Ghosh 

and Scofield, 1988; Reilly, Collins, Scofield and Ghosh, 1991; Grudnitski, Quang, and Shilling, 

1995). 

Vishwakarma, (1994) and Qi (2001) have found neural networks to be useful in 

predicting business cycle turning points. Three studies by Swanson and White (1995, 1997a,b) 

find that nonlinear neural networks are useful in economic time series forecasting of interest 

rates, unemployment, GNP, etc.  

In prediction of corporate takeover targets, Sen and Gibbs (1994) found several neural 

network models map the data very well, but did not predict merger targets significantly better 

than logistic regression. 

Furthermore, the technology has been found useful in other diverse applications like 

commodity trading (Kaastra and Boyd, 1995); exchange rate forecasting (Zhang, 1994; Kuan and 

Liu, 1995; Gencay, 1999); real estate valuation (Worzala, Lenk and Silva, 1995); option pricing 

(Hutchinson, Lo and Poggio, 1995; Garcia and Gencay, 2000); detection of management fraud 

(Fanning, Cogger and Srivastava, 1995); earnings forecast (Charitou and Charalambous, 1996); 

Kim, 1996). 
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In theory, neural networks are suitable for nonlinear problems. Zhang (2001) found that 

neural networks are quite effective in linear time-series modeling and forecasting. This implies 

that the technology can compete with linear models for linear problems.   

Since the first draft of this article in 1995, neural networks have been used in volatility 

forecasting by some other authors. Ormoneit and Neuneier (1996) predict volatility of the 

German stock market using two types of networks. Donaldson and Kamstra (1997) have proposed 

the use of neural network-GARCH model to capture volatility effects in stock returns. González 

Miranda, and Burgess (1997) have used the networks to predict intraday volatilities for the 

Spanish stock market. Schittenkopf, Dorffner and Dockner (1998) predict the volatility of the 

Austrian stock market and find neural networks outperform ARCH models. Schittenkopf, 

Dorffner and Dockner (2000) use daily DAX data and find that volatility predictions from neural 

network are superior to GARCH models in that they have higher correlations with implied 

volatilities. Meissner and Kawano (2001) use a combined GARCH-neural network approach to 

capture the volatility smile of options on high-tech stocks.  

In sum, neural networks have been found useful in many different types of applications in 

economics, finance and business. They have been found to outperform linear models in a variety 

of circumstances. However, the performance of the networks has not been consistent in all cases. 

They have been particularly effective in capturing complex relationships in which linear models 

fail to perform well (see White, 1989b, and Kuan and White, 1994). 

The vast majority of the about 100 studies on which Exhibit 2 is constructed, were 

published in nonfinance journals and nonfinance researchers authored many of them. This can 

lead one to wonder if finance/economics academics may still find neural networks to be esoteric 

"black-box" enveloped in mystique. This article seeks to remove some of the mist. It explains in 

nontechnical terms what a neural network is and how a version of it works. 
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A better understanding of the technology will hopefully generate needed research in the 

many unresolved issues relating to its applications in economics and finance. Practitioners in 

greater numbers can reap the benefits of present and potential uses of the technology. (For some 

finance academics, the lack of formal theoretical foundation behind neural networks may be the 

reason to avoid it.) 

 This paper provides a primer on using neural networks for forecasting market variables in 

general, and in particular, forecasting volatility of the S&P 500 Index futures prices using over 

ten years of daily data on a number of input variables. Volatility forecasts from neural networks 

are compared with implied volatility forecasts using Barone-Adesi and Whaley (1987) American 

futures options pricing model. The forecasts from neural networks and the options pricing model 

are for similar horizons and time periods. Volatility forecasts from the two methods are then 

compared with realized volatility. 

 The next section briefly explains neural network. Then we describe neural network 

architecture and operation of possibly the most commonly used type of network for forecasting -- 

the back-propagation network. We then show how the networks can be used for forecasting 

volatility of the S&P 500 Index futures prices using data on a number of market variables. 

Finally, we present analysis of the results we obtain and compare against implied volatility 

forecasts and realized volatility.  

   

WHAT IS A NEURAL NETWORK? 

A neural network is a computational technique that benefits from techniques similar to ones 

employed in the human brain. It is designed to mimic the ability of the human brain to process 

data and information and comprehend patterns. It imitates the structure and operations of the 

three dimensional lattice of network among brain cells (nodes or neurons, and hence the term 
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"neural"). The technology is inspired by the architecture of the human brain, which uses many 

simple processing elements operating in parallel to obtain high computation rates. Similarly, the 

neural network is composed of many simple processing elements or neurons operating in parallel 

whose function is determined by network structure, connection strengths, and the processing 

performed at computing elements or nodes. 

 The learning process of the neural network can be likened to the way a child learns to 

recognize patterns, shapes and sounds, and discerns among them. For example, the child has to be 

exposed to a number of examples of a particular type of tree for her to be able to recognize that 

type of tree latter on. In addition, the child has to be exposed to different types of trees for her to 

be able to differentiate among trees.  

   The human brain has the uncanny ability to recognize and comprehend various patterns. 

The neural network is extremely primitive in this aspect. The network’s strength, however, is in 

its ability to comprehend and discern subtle patterns in a large number of variables at a time 

without being stifled by detail. It can also carry out multiple operations simultaneously. Not only 

can it identify patterns in a few variables, it also can detect correlations in hundreds of variables. 

It is this feature of the network that is particularly suitable in analyzing relationships between a 

large number of market variables. The networks can learn from experience. They can cope with 

“fuzzy” patterns – patterns that are difficult to reduce to precise rules. They can also be retrained 

and thus can adapt to changing market behavior. 

 The network holds particular promise for econometric applications. Multilayer 

feedforward networks with appropriate parameters are capable of approximating a large number 

of diverse functions arbitrarily well (see White, 1989a). Even when a data set is noisy or has 

irrelevant inputs, the networks can learn important features of the data. Inputs that may appear 
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irrelevant may in fact contain useful information. The promise of neural networks lies in their 

ability to learn patterns in a complex signal.  

Time series models are one of the more widely used approaches for prediction purpose. 

Although useful, time series models pose a problem in the very beginning. Identification of the 

model (autoregressive versus moving average, or a combination of the two) that will fit a 

particular time series of data, and the order specification that will be appropriate is the difficult 

first step in using time series models. Neural networks do not depend on assumptions regarding 

the data but adapt to the data (see Davies, 1995). Also, statistical models encounter difficulty 

when a data series is noisy. This happens to be the case with most financial market data -- they 

are hard to model or hide obvious pattern. Neural networks are adept at handling such data. They 

have performed well in a number of applications in which linear models fail to perform well (see 

White, 1989b, Kuan and White, 1994). Specially, when it comes to forecasting financial market 

variables characterized by nonstationarity, neural networks incorporating nonlinear regression 

models have distinct edge. 

 A neural network can be described as a type of multiple regression in that it accepts 

inputs and processes them to predict some output. Like a multiple regression, it is a data modeling 

technique. 

 Neural networks have been found particularly suitable in complex pattern recognition 

compared to statistical multiple discriminant analysis (MDA) since the networks are not subject 

to restrictive assumptions of MDA models (see Coats and Fant, 1993). 

   

Network architecture 

 Network architecture deals with arrangement of neurons into layers and the connection 

patterns within and between layers. The type of problem to be solved has a great deal to do with 
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network architecture. The networks have been applied to solve problems in a wide variety of 

areas. Problem solving approaches in which the networks have been used include classification, 

filtering, pattern association, optimization, conceptualization and prediction. (Our concern in this 

paper is the last one). For each problem solving approach more than one architecture may be 

used. Each architecture goes with numerous variations depending on parameters selected. 

Network parameters vary in factors as the following: 

• The number of layers in the network through which input variables are processed and the 

number of neurons or nodes per layer (neurons are the elements that process the inputs and 

learn about relationships between input and the output variables); 

• Connections between neurons in each layer and the strength (weight) of each connection; 

• Transfer function, through which the network seeks to relate the input data with the output 

data. 

These factors are explained below. 

 

Number of layers and neurons in each layer    

   It is helpful to visualize neurons as being grouped in layers. The number of layers will 

depend on the type and complexity of problem we explore. For prediction purpose, the most 

common form of architecture is probably the feedforward multi-layered network commonly 

termed back-propagation, or simply back-prop. 

   A typical architecture incorporating back-propagation is shown in Figure 1. Networks of 

this type have at least three layers (see Katz, 1995). The first is the input layer that presents data 

into the network. This layer has as many neurons as there are input categories. 

   The next layer is called the hidden layer because it is essentially hidden from the access 

of inputs and outputs. A network may have more than one hidden layer depending on the 
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complexity of the problem. The hidden layer(s), in conjunction with the input layer, creates an 

internal mapping of the input data. This process explores hidden patterns, correlations and causal 

relationships in the data set in order to make generalizations. For financial forecasting, typically 

one hidden layer may be sufficient to map input data to output data. 

 No analytical formula can tell us how many hidden layers to use. That will need 

experimentation. How many neurons to use in the hidden layer? Too few neurons prevent the 

network from correctly mapping inputs into outputs. Too many neurons may cause the network to 

"memorize" trivial patterns that can impair its ability to "assimilate" important features or trends 

and make proper generalizations. For example, suppose we want to predict the price of a stock 

using fifteen explanatory variables and so we use fifteen neurons in the input layer. If we use only 

five neurons in the hidden layer, we will not enable the network to exhaustively map the different 

ways in which the stock price might evolve. On the other hand, if we use fifty or forty neurons, 

we risk overloading the network so that it overlooks the nontrivial and captures trivial 

relationships. Mendelsohn (1993) suggests hidden neurons between half the number of input 

variables and two times that number. 

   The final layer is the output layer. Each neuron in the output layer receives input from 

each neuron in the hidden layer immediately proceeding. The number of neurons in the output 

layer will equal the number of output categories we want. 

In nearly all cases, a three-or-four-layer network will do well; layers beyond four rarely 

perform better and increase the training time. Qi (1996) outlines a few optimal network 

guidelines that have been proposed. 
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Connections between neurons and their strengths 

 Connectivity of the neurons is an important part of network architecture. The neurons can 

be fully connected or partially connected. In the case of a fully connected network, all first layer 

neurons are connected to all hidden neurons in the next layer, and all second layer neurons are 

connected to all third layer neurons. Finally, all neurons in the last hidden layer are connected to 

all neurons of the output layer. Figure 2 shows a fully connected network with three layers. The 

connections carry initial weights (connection strengths) which are altered during training. The 

network has to be fed with some random "seed values". The seed values provide initial weights 

(‘hints’) which the network learns to adjust in subsequent runs. The algorithm of the back-

propagation network (called "generalized delta rule") provides the "learning rule" or the method 

through which the network changes the connection weights during training, and thereby finds 

optimal values for the weights. 

 Apart from the architecture, neural networks set themselves apart by the way values of 

the weights are set for training purpose. In supervised training method, a network is trained by 

presenting it with a series of training cases (vectors) each with associated target output values. 

The weights are then adjusted based on the learning rule specified. In unsupervised training, a 

self-organizing network groups together similar input vectors without using training cases. It 

specifies characteristics of typical member of each group or the group to which each vector 

belongs. Weights are modified such that the most similar input values are assigned to the same 

output category. 

 

Transfer function 

   Another very important functional issue involves the transfer function. Through this 

function a network seeks to make sense of the input data. The position and role of a transfer 
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function are illustrated in Figure 3. The figure also illustrates the basic functioning of an 

individual neuron. Each of the interconnected processing elements -- or neurons -- in a neural 

network sends and receives data to and from other processing elements. Input data (I1, I2,..., In) 

are multiplied by the weights (W1, W2,.., Wn) associated with the connection to the neuron. These 

products are then passed through a transfer function, which converts the sum into a value in a 

specified interval between 1 and -1 or 1 and 0. The output from this neuron is then multiplied by 

another, separate weight and fed into the next neuron. If a neuron is in the output layer, then the 

output from this neuron is not multiplied by a new weight.  It becomes the output itself.  

 Figure 4 shows a typical transformation in a transfer function using sigmoid function 

(which produces an S-shaped curve). The purpose is to scale the input values to reasonable levels 

(e.g., between 0 and 1). It is done before the output is passed on to the next level. Without this 

transformation the output value may be very large. A sigmoid transfer function dulls the effect of 

outliers. When financial market data is used, such function is preferred because of the presence of 

outliers. In addition to standard sigmoid, variations of sigmoid, Gaussian, hyperbolic tangent and 

sine transfer functions are appropriately used in various problem-solving approaches. 

  

Operation of the back-propagation network  

 We go back to Figure 1 to understand the forecasting operation of a simple, fully 

connected, feedforward back-propagation network. Feedforward refers to network architecture, 

whereas back-propagation is a training method. To forecast, the network has to be trained using 

historical data. Data inputs have to be in numbers -- prices, volume, ratios, etc.  

 A single input category is fed into a single neuron in the input layer. Thus, there are as 

many neurons in the input layer as there are input categories. Each neuron multiplies the input 

data by some initial weight and passes on the value to every neuron in the hidden layer. Thus, 
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each hidden layer neuron receives input from every input layer neuron in a fully-connected 

network.  

 Each neuron in the hidden layer sums the values it receives and runs the summed value 

through a transfer function contained in it. The transfer function determines a weight with which 

the summed value is multiplied and then passed on to the single neuron in the output layer.  

 The neuron in the output layer receives values from all the neurons in the hidden layer. It 

sums the values, runs the result through its transfer function and multiplies the value by some 

weight to produce an output. The network compares this output with the desired output and 

determines the difference between the two. This forms the error signal after the first run.  

 The error signal is fed back through the output layer and the hidden layer(s) to the first 

layer. As the error signal goes backward, each hidden neuron can determine how strongly it is 

connected to the output unit and the error at that neuron. A hidden neuron modifies its weight in 

proportion to the error times the input signal which reduces the error in the direction of most 

rapid reduction in error. The transfer function specified for each hidden neuron provides the rule 

for adjusting the weights based on the magnitude of the error in the output neuron. The extent of 

change in a given weight, as per the generalized delta rule, is the derivative of the transfer 

function with respect to its total input (see Rumelhart, Hinton and Williams, 1986). The  process 

of feedforward and back propagation of values continues so that the error between the output 

generated and the output desired, is gradually minimized over a series of data runs. In this way, 

the network trains itself to generate output closer and closer to desired output. This process of 

trial and error enables the network to recognize patterns, relationships and correlations between 

the input variables and the output category.  The errors will not be reduced to zero specially with 

real financial data. When the network can hardly minimize errors as more input data is fed, it 
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reaches a steady state and the output can then be used for testing. Lippmann (1987) provides 

back-propagation training algorithm. 

 

LIMITATIONS OF NEURAL NETWORKS  

 A major shortcoming is that the steps or process through which a network produces an 

output cannot be debugged or decomposed. As Hawley, Johnson and Raina (1990) note, that 

process which involves the lattice of connection weights cannot at present be translated into an 

algorithm that would be intelligible outside neural networks. Another major shortcoming is that a 

network may "overfit" the data. Kean (1993) points to this generic tendency in neural networks: 

difficult problems like financial market prediction can "actuate memorization" of idiosyncratic 

patterns in the training data that will not be of help in out-of-sample data. If a network cannot 

minimize error by learning significant relationships between input variables and the output 

variable, it tends to do so by memorizing trivial relationships. It may find any pattern however 

spurious and coincidental, think it to be significant and predict based on it. To prevent overfitting 

one solution is to use "fuzzy logic" which instructs the network not to be emphatic when its 

conclusion is tentative. Another approach is to use "genetic algorithm" which also uses trial and 

error and its mechanism is similar to how evolution works by mutation and natural selection (see 

Ridley, 1993). Yet another solution is not to use too many data columns. Kean (1993) contends 

that too much of extraneous information not only lengthens the learning period, the output will 

probably suffer. 

 The technology also suffers from lack of optimal algorithm to ensure the global minimum 

because of multi-minima error surface (see Qi, 1996).  

 The lack of formal theory behind neural networks to help in model building implies users 

need a certain degree of sophistication in terms of selection of input variables and specifying 
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appropriate network architecture. One approach may be to use in-sample model selection criteria 

like Akaike’s information criteria (AIC) and Bayesian information criteria (BIC). However, Qi 

and Zhang (2001) find that the commonly used in-sample model selection criteria are not able to 

identify the best neural network model for out-of-sample prediction. That implies that trial and 

error will continue to be an essential aspect of use of the networks. However, some networks, as 

the one we use, provide coefficients to reflect the relative contribution of input variables to the 

prediction of desired output. Finding correlation between input variables and the output 

variable(s) is also helpful. The combined use of these two tools can at least ease the input 

selection issue.  

 Like factor analysis, neural networks cannot be used to confirm ex-post the identity of 

causal factors. Also, ex-ante identification of factors does not provide strong grounds to assert 

causality even when we have a good empirical fit. 

 Few statistical concepts have been applied in the development of neural networks. 

Nevertheless, the technology bears relationship with statistical models (see Qi, 1996). 

 

EXPERIMENTAL DESIGN 

Data 

We want to predict the volatility of the S&P 500 Index futures prices. Our raw data series 

consists of closing settlement prices of sixteen nearest futures contracts and three spot indexes. 

We take the futures contract class that will mature in the nearest maturity month. The maturity 

months are March, June, September and December. The nineteen variables are listed in Table 1. 

Seven of the sixteen futures contracts are on commodities, three on Treasury obligations, and six 

on foreign currencies. The three spot indexes are DJIA, NYSE Composite Index and S&P 500 

Index. We also use one-day lagged S&P 500 futures prices as an additional explanatory variable 



 17

for a total of twenty such variables. We select these variables because of availability of ten years 

of daily data on them -- from February 1, 1984 to January 31, 1994 – 2,531 observations per 

variable. The data set was obtained from Knight-Ridder Financial Publishing. Since neural 

networks need to be trained with a large data set, it fits well with our needs. From the raw data 

series we calculate 20-day rolling historical standard deviations (HSD). We calculate HSDs from 

daily percentage price changes of the twenty variables calculated as natural log relatives of the 

price or index series. The percentage change for day 2 based on prices P1 and P2 will be given by: 

Ln(P2/ P1). We use about five hundred HSD observations to train the network, and the rest for 

forecasting.  

We obtain ninety forecasts as of the days shown in Table 2. Thirty of the forecasts are 

over 55 days following the forecast dates (55-day forecasts), and equal numbers of 35-day and 15 

day forecasts. These forecast dates and horizons correspond to implied volatility forecasts we 

obtain using the Barone-Adesi and Whaley (1987) American futures options pricing model.  

 

ISDs from Barone-Adesi and Whaley (BAW) futures options pricing model 

The BAW model is for pricing American options on futures which has no analytic 

solution. We devise an algorithm for extracting ISDs from the model. We execute the algorithm 

on a connection machine to extract the implied volatilities from the BAW model. (Connection 

machines are parallel processors that have speed beyond the reach of present-day PCs.) The 

implied volatilities are obtained from call options on S&P 500 Index futures contracts. We use 

just-out-of-the-money options on dates shown in Table 2 to extract the implied volatilities. These 

are options for which futures price minus exercise price is nearest to 1 but negative.  

The futures and options maturity classes run from January 1986 to June 1993 -- four 

maturity classes per year. For each futures maturity class, we extract forecasts at three different 
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points in the life of the series. These three forecasts serve as forecasts for the three horizons: 55, 

35, and 15 trading days to maturity of a futures contract. As shown in Table 2, the forecast dates 

are 55, 35 and 15 days prior to the maturity of nearest futures contracts and corresponding options 

contracts. This will enable us to compare forecasts from neural networks with implied volatility -- 

a type of forecast that is highly regarded. We compare forecasts from neural network and from 

BAW model with volatility realized over each of the three forecast horizons. Since the realized 

volatilities are obtained on the basis of trading days as opposed to calendar days, to be consistent 

we modify the BAW model to get ISDs based on trading days. 

 

Volatility realizations 

 We derive 55-day realized standard deviation (RSD) from daily log relatives of the 

present value of S&P 500 Index futures settlement prices from 55 days before maturity until the 

day of maturity. For the 35-day and 15-day forecast horizons, the daily returns are based on daily 

log relatives of the present value of the index futures settlement prices respectively from 35 and 

15 days before maturity until the day of maturity. RSD on day t is calculated as follows: 

 ......................................................................................(1) RSD R Rt j
j=t

t+n _
= −∑[ ( ) / ] /2 1n 2

 where: 

  Rj = ln [Fj / F(j-1)] 

  R  = Rj / n   
_

   Fj = Present value of futures price on date j 

   n  = 55, 35, 15 respectively for RSDs over the three horizons. 
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     As Figure 5 shows, each 55-day forecast from a futures maturity class will be non-

overlapping with the 55-day forecast from the previous or subsequent maturity classes. This will 

ensure that the forecast error of each period will be uncorrelated with the errors of other periods. 

The error of the 35-day forecast obtained from a series will be uncorrelated with the errors of 

other 35-day forecasts. Similar is the case of errors of 15-day forecasts.  

Then we compare the two sets of 55-day forecasts with 55-day volatility realizations. 

Similarly, we separately evaluate the accuracy of the 35-day forecasts and the 15-day forecasts by 

comparing with corresponding volatility realizations.  

 

Forecast accuracy       

   To measure forecast accuracy, we calculate mean of absolute errors (MAE) and root 

mean of squared errors (RMSE) of volatility forecasts compared to realized volatility for the three 

forecast horizons, as follows: 

 .............................................................................(2)  ∑ −
30

1=i
it

^

it )]Y[Abs(Y*1/30=MAE

 ...........................................................................(3)

 where: 

∑ −
30

1=i

2/12
it

^

it ])Y(Y*[1/30=RMSE

          Y
^

it  =  forecasted standard deviation. 

           t    =  forecast horizon (15, 35, 55 days);  

          Yit  =  realized standard deviation. 

 We also separately test for the differences in the means of each type of forecast with 

respect to the means of realized volatility for each of the three forecast horizons using standard 

test statistics. Since the standard t-tests assume normal distribution of the data and our data may 
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not be normally distributed, we also perform a nonparametric test -- the Mann-Whitney test -- 

sometimes also known as the Wilcoxon rank sum test. This test performs a two-sample rank test 

for the difference between two population medians. 

 

VOLATILITY FORECASTS USING NEURAL NETWORKS 

Steps in forecasting volatility 

 We use the following steps to forecast volatility from a backpropagation neural network 

using the 20-day rolling historical standard deviation series of the input variables. 

 (a) Selection of input variables 

 (b) Preprocessing the input data 

 (c) Specifying a neural network 

 (d) Training the network and forecasting  

These four steps are explained below.  

 

(a) Selection of input variables 

   This step identifies the variables that contribute the most to forecasting the target 

variable. Too many variables can unnecessarily overload the system. If we omit important 

variables, then its effect on the performance of the neural network can be significant. Our 

perspective on the markets will affect the choice of input data.  

Mendelsohn (1993) proposes a synergistic market analysis -- combining technical 

analysis and fundamental analysis approaches with intermarket analysis -- implemented using a 

neural network to predict, for example, the next day's high and low for the Treasury bond market. 

Technical price data on Treasury bonds would be fed into the network, allowing it to learn the 

general price patterns and characteristics of the target market. In addition, fundamental data that 
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affect the market can also be input into the network. Few examples are federal funds rate, Gross 

Domestic Product, money supply, inflation rate and consumer price index. Mendelsohn argues 

that using fundamental data as well as technical data can improve the overall performance of the 

network. He further claims that incorporating intermarket input data on related markets enables 

the network to utilize this information to find intermarket relationships and patterns that affect the 

target market. A few examples of intermarket data are US dollar index, S&P 500 Index and 

currency exchange rates. 

To predict the next days high and low for the Treasury bond market one can select any 

number of variables. But the larger the number of variables, the longer will be the training period 

required and greater the possibility that the data will overfit the model determined by the network. 

As an upper limit to the number of input variables, Kean (1993) suggests around ten percent of 

the number of data observations. Thus, if there are three hundred days of observations to train a 

network, Kean recommends thirty variables.  

The selection of input variables will depend on the knowledge of what affects the target 

variable and the use of statistical tools to find correlation between the target and the other 

variables. It can be a lengthy process of trial and error. Multiple regression analysis can help to 

identify statistically significant variables that can be used as input variables; principal component 

analysis and stepwise regression analysis would also be helpful. 

To simplify this step, we initially included twenty explanatory variables mentioned 

earlier and shown in Table 1. We find the correlations of the daily price changes of eighteen of 

the twenty variables with the daily price changes of S&P 500 Index futures contracts. (We do not 

calculate the correlation of the S&P 500 Index futures prices with its lag or with S&P 500 Index 

since the correlations will be very high.) Table 1 reports the correlation coefficients. From the 



 22

twenty variables, we select thirteen explanatory variables as indicated in the last column of Table 

1. In general, a variable is selected if it meets one of the two conditions: 

• correlation with futures prices is greater than 5% and less than -5%; or, 

• high relative contribution to forecasting (relative contribution coefficient greater than 0.07 is 

the criteria used; this coefficient is provided by the network we use and is explained in 

McCormick, 1992). 

This leaves us with sixteen explanatory variables. Under the apprehension that this number may 

be on the high side -- in which case the network may "overfit" the data -- we dropped three more 

variables. We dropped the Canadian dollar (relative contribution coefficient of 0.33) because of 

its very low correlation (0.005) with S&P 500 Index futures prices. We dropped Eurodollar in 

spite of its modest correlation with S&P 500 Index futures prices (0.15) and modest relative 

contribution coefficient (0.23). We also dropped DJIA (relative contribution coefficient of 0.078 

and correlation of 0.94) under the assumption that its effect will be captured by the included 

variable -- S&P 500 Index. This implies there is scope for obtaining better forecasts from the 

networks by using a different number of input variables than we used.  

 

(b) Preprocessing the input data 

   Neural networks need properly transformed data to be able to process them and generate 

sound forecasts. Transformation, normalization and data smooothing are three common ways of 

preprocessing data. Through transformation we can coalesce a few input variables to form a 

single input category. Methods include taking differences between inputs or ratios of inputs. 

Reducing the inputs may help the network learn better. However, it is not necessary to transform 

data before feeding into a network.  
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Normalization makes the statistical distribution of each input and output data roughly 

uniform. The values are scaled to match the range that the input neurons use. Data normalization 

methods, which include simple linear scaling and statistical measures of central tendency and 

variance, remove outliers and spread out the distribution of the data. 

   Data smoothing filters out noise in the data. Smoothing techniques suggested are simple 

and exponential moving averages, and polynomial regression. Data smoothing serves two 

purposes. First, the network has been given useful information at a reasonable level of detail. 

Second, the noise entering the data is reduced.  

Some of the networks available in the market have limited built-in preprocessing 

capabilities like scaling and randomly rearranging data to remove serial dependence. However, 

these networks cannot transform or smooth data. If we need to transform or smooth data, we have 

to do that before feeding the data into the system. 

Preprocessing has two parts: (i) arranging the data in the form that the neural network can 

read, and, (ii) scaling the data so that the maximum and minimum of each variable falls in a range 

of 1 and –1 (or 0 and 1 depending on the type of transfer function specified) respectively, and the 

other values are scaled accordingly.  

 

(c) Specifying a neural network 

   Since a typical backpropagation network should have at least three-layers, we specify a 

three-layered network. Appropriate specification of number of layers is an art. It needs 

experimentation. The countless combinations of layers and neurons that we can make and the 

time it takes to train a network after each specification is an arduous exercise. A single or two-

layer network would be rather inadequate in capturing the complex interrelationships between 

market variables. The number of layers specified -- three -- is such that it is not too few and not 
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too many. We could also use four layers. But that would make the training time prohibitive. The 

resulting improvement in forecast accuracy may not be worth the extra time. However, a 

backpropagation network should have at least three layers.  

 The number of neurons in the first layer -- thirteen -- is equal to the number of 

explanatory variables. We specified two times that many neurons in the second layer. Lesser 

number of neurons could also have been specified. But since we use three layers rather than four, 

we wanted to be rigorous in terms of number of neurons in the hidden layer. More layers and/or 

neurons would have increased the training time for each of the desired ninety forecasts. The 

results would also change. 

   In the network specification stage we can adjust a number of default parameters or values 

that influence the behavior of the training process. These deal with the learning, forgetting and 

error tolerance rates of the network, the overlearning threshold, the maximum number of runs, 

stop value for terminating training and randomizing weights with some specified dispersion. In 

the absence of objective guidelines, we set most of these parameters to default values of the 

network. 

 

(d) Training the network and forecasting  

 A neural network learns from past experience and so has to be trained with a sufficient 

number of training cases. (This contrasts with expert systems, which have to be fed with rules.) 

The use of too few training cases will cause the network to map an inadequate model for the 

output. One rule of thumb suggests four times as many test cases as weights. That means a 

network with 100 weights needs to be fed with at least 400 training cases. The time taken to train 

the network will depend on the number of layers, the neurons per layer, the number of iterations 
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on each day’s data set and the speed of the computer. Much of the art of using neural networks 

comes into play in the training phase. Among the decisions involved at this stage are: 

• the number of layers and neurons per layer; these can be varied depending on the performance 

of the network during the training phase; 

• type of transfer function; the standard sigmoid is the most commonly used for market 

forecasting; 

• number of times each day's data set will run through the system;  

• the learning rate: extent of correction applied to the connection weights at each step of training; 

this is not a crucial decision, it can be set to default value. 

 We train the network using the thirteen explanatory variables mentioned earlier. We use 

500 days of data for training purpose. Each set of observations is run 500 times through the 

network. After each run, the network compares the forecasted volatility of futures prices with the 

desired volatility. It calculates and feeds the error backward. The neurons reset their weights each 

time the errors are fed back.  

 The desired volatility on a particular day for the 55-day forecast horizon is the volatility 

realized in the subsequent 55 days. The desired volatility on a particular day for the 35-day 

forecast horizon is the volatility realized in the subsequent 35 days. For the 15-day horizon, the 

desired volatility on a particular day is the 15-day volatility realization.  

 After each volatility forecast, we change the training observations. In each case, we use 

500 20-day rolling HSD observations for training. These observations are for the 500 trading days 

prior to a forecast date. In all we get thirty forecasts for each of 55, 35 and 15 trading days -- a 

total of ninety forecasts. 
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ANALYSIS OF RESULTS  

 Table 3 shows realized standard deviations (RSD), volatility forecasts from neural 

networks (Neural) and implied standard deviations (ISD) using Barone-Adesi and Whaley 

American futures options pricing model. The realized and forecasted volatilities are shown for the 

three forecast horizons of this study: 55, 35 and 15 days to the maturity of nearest futures and 

corresponding options contracts. For each forecast class we have thirty forecasts. The bottom of 

the table shows the means of RSD, Neural and ISD. T-tests for differences in means of RSD 

versus Neural show no significant differences in the means in the case of all three forecast 

classes. T-tests for differences in means of RSDs versus ISDs show significant difference in the 

means of 15-day and 35-day forecasts (p-value = 0.00 and 0.01 respectively in one-tailed test), 

and no significant difference in the case of 55-day forecasts (p-value =0.44 in one-tailed test).. 

That means, whereas ISDs have provided good forecast over the 55-day horizon, neural forecasts 

have been good in the case of all three horizons. Results of Mann-Whitney nonparametric tests 

yield similar conclusions: in 2-tailed tests neural forecasts do not show significant differences 

from realized volatilities in the case of all three forecast classes; ISDs are significantly different 

from volatility realizations in the case of 15-day and 35-day forecast classes (p-values = 0.01 in 

both cases) and not so significantly different in the case of 55-day forecast class (p-value = 0.13).  

 It clearly implies that for the data in our sample, volatility forecasts from neural networks 

yielded superior results compared to implied volatilities.  

 Table 3 also shows the mean absolute errors and root mean squared errors of the two 

types of forecasts. On both measures, and for all three forecast classes, neural forecasts 

outperform ISDs. 
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CONCLUSION 

 The use of neural networks in finance is a promising field of research specially given the 

ready availability of large mass of data sets and the reported ability of neural networks to detect 

and assimilate relationships between a large number of variables. However, the realization of the 

potentials of neural networks in forecasting the market involves more of an art than science. 

There are many ways and combinations in which a neural network can be specified and many 

types of data can be simultaneously used. Much of that is yet unexplored. The principles that can 

guide us in effectively utilizing the networks in financial applications remain a fertile area of 

research.  

 

DIRECTION FOR FUTURE RESEARCH 

 In our forecasting, we used thirteen input variables. We also used eleven input variables; 

the results did not improve. Could it have improved with more than thirteen variables? Could the 

results have improved with a different number of neurons in the hidden layer, or with two rather 

than one hidden layer? Guidelines available at present are rather sketchy at best. A great deal of 

trial and error experimentation is called for. Programming skills are not essential with many 

commercial software tools for neural networks that are available. A useful site listing many such 

softwares with links to description on them is: 

www.emsl.pnl.gov:2080/proj/neuron/neural/systems/software.html. 

This article is intended as a primer on how to use neural networks for market forecasting. 

It makes a rather straightforward exposition of forecasting volatility of S&P 500 Index futures 

prices. However, the field is advancing. Extension of this research may proceed in the following 

directions: use simulated and real data to validate the robustness of results following Zhang 

http://www.emsl.pnl.gov:2080/proj/neuron/neural/systems/software.html
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(2001); specify both linear and nonlinear neural networks to compare the in-sample fitting and 

out-of-sample forecasts; use AIC and BIC criteria to add to o the results following Qi and Zhang 

(2001); use a recursive model similar to Qi (2001) to capture possible structural changes in the 

economy that may have an impact on forecasts.   

 .  
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Exhibit 1 

Applications of Neural Networks 
 

 
 
 Among the areas in which neural networks have been used are: 
 
• sensor signal processing and data fusion; 
• filtering out noise in electronic communications systems; 
• pattern classification, image processing, and machine vision; for example, in designing an 

airport security system; 
• automated inspection to diagnose malfunctions in automobiles; 
• robotics and sensor-motor control; 
• speech recognition and synthesis, and natural language; for example, converting written into 

spoken English; 
• knowledge processing; 
• database retrieval; 
• computer-based handwriting and character recognition; 
• medical diagnosis, healthcare, and biomedical applications, such as hybrid scheme for 

diagnosing skin diseases; 
• manufacturing and process control; 
• defense applications; 
• assessing credit/insurance risk; 
• financial forecasting applications; 
• stock picking/portfolio management/automated trading. 
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Exhibit 2 
Studies on application of neural networks in economics/finance* 

 
 
 
• Prediction of stock price/stock index/stock selection: White (1988), Sharda and Patil 

(1990), Kimoto, Asakawa, Yoda, and Takeoka (1990), Kamijo and Tanigawa (1990), Yoon 

and Swales (1991), Wong, Wang, Goh and Quek (1992), Kryzanowski, Galler and Wright 

(1993), Rhee (1994), Kohara, Ishikawa, Fukuhara and Nakamura (1997), Brown, Goetzmann 

and Kumar (1998), Gencay (1998), Qi and Maddala (1999). 

• Business cycle forecasting: Hoptroff, Bramson and Hall (1991), Vishwakarma (1994), Qi 

(2001). 

• Economic time-series forecasting: Swanson and White (1997a,b); Model selection criteria: 

Qi and Zhang (2001); Data requirement: Walczak (2001); Linear time-series forecasting: 

Zhang (2001). 

• Interest rate prediction: Swanson and White (1995), Kim and Noh (1997). 

• Volatility prediction: Ormoneit and Neuneier (1996), Donaldson and Kamstra (1997), 

González Miranda and Burgess (1997), Schittenkopf, Dorffner and Dockner (1998), 

Schittenkopf, Dorffner and Dockner (1999); Capturing volatility smile of options: Meissner 

and Kawano (2001). 

• Earnings prediction: Charitou and Charalambous (1996), Kim (1996). 

• Investment analysis: Valuing manufacturing flexibility: Feurstein and Natter (1998). 

• Predicting merger target: Sen and  Gibbs (1994). 

• Financial distress prediction: Bell, Ribar and Verchio (1990), Salchenberger, Cinar and 

Lash (1992), Tam and Kiang (1992), Coats and Fant (1993), Fletcher and Goss (1993), Udo 

(1993), Altman, Marco and Varetto (1994), Fanning and Cogger (1994), Boritz and Kennedy 

(1995), Boritz, Kennedy and de Mirande e Albuquerque (1995), Lenard, Alam and Madey 

(1995), Back, Laitinen and Sere (1996), Greenstein and Welsh (1996), Barniv, Anurag and 

Leach (1997), Bell (1997), Etheridge and Sriram (1997), Hongkyu, Han and Lee (1997), 

O’Leary (1998), Zurada, Foster, Ward and Barker (1998), Yang, Platt and Platt (1999). 

• Fraud detection: Fanning, Cogger and Srivastava (1995), Fanning and Cogger (1998). 

• Financial statement analysis: Kryzanowski and Galler (1995). 



 31

• Bond risk analysis: Dutta and Shekhar (1988), Moody and Utans (1991), Surkan and 

Singleton (1991), Kim, Weistroffer and Redmond (1993), Maher and Sen (1997). 

• Mortgage risk assessment: Collins, Ghosh and Scofield (1988), Reilly, Collins, Scofield and 

Ghosh. (1991), Grudnitski, Quang and Shilling (1995). 

• Real estate valuation: Worzala, Lenk and Silva (1995). 

• Commodity trading: Collard (1991), Bergerson and Wunsch (1991), Trippi and DeSieno 

(1992), Kaastra and Boyd (1995). 

• Exchange rate forecasting: Kuan and Liu (1995), Dropsy (1992), Trippi and DeSieno 

(1992), Refenes (1993), Zhang (1994), Gencay (1999). 

• Pricing derivatives:  Malliaris and Salchenberger (1992), Hutchinson, Lo and Poggio 

(1995), Lajbcygier and Connor (1997), Geigle and Aronson (1999), Hanke (1997), Keber 

(1999), Carelli, Silani and Stella (2000), Garcia and Gencay (2000), Zapart (2003). 

• Real option valuation: Taudes, Natter and Trcka (1998). 

• Model testing: Testing APT: Ahmadi (1990); testing multilayer networks: White (1989a); 

testing model selection criteria: Qi and Zhang (2001); data requirements: Walczak (2001). 

 

* For about eight more studies, see Trippi and Turban (1993). Four of the studies are on financial 

distress prediction, three on financial forecasting approaches, and one on commodity trading. 

Also, see Refnes (1995) for more articles using neural networks in finance; the articles deal with 

equity applications, foreign exchange applications, bond applications, and macroeconomic and 

corporate performance.  
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Exhibit 3 
Potential research areas in finance using neural networks*  

 
 

A. CORPORATE FINANCE 
1. Financial simulation  

• Simulate the behavior of firm’s credit customers as economic conditions change: to plan for: 
o Planning for bad-debt expenses and accounts receivable cyclicity 
o Evaluating credit terms and limits 

• Cash management 
• Capital budgeting 
• Exchange rate risk management 
• Prediction of credit costs and availability 
• Sales prospect selection 
• Analyze corporate financial health 

 
2. Prediction 

• Train network to mimic the behavior of investors in response to changes in economic conditions 
or company policies (dividend policy, capital structure, accounting standards, etc.) 

• Predicting changes in market trends 
• Forecast personnel requirement 

 
3. Evaluation 

• Value an acquisition target based on financials. 
• Identify desirable acquisition targets based on qualitative criteria or learn personal preferences of 

human expert. 
 
B. FINANCIAL INSTITUTIONS

• Pricing IPOs 
• Simulation of market behavior 

 
C. INVESTING 
1. Arbitrage pricing/identifying arbitrage opportunities 
2. Technical analysis 
3. Fundamental analysis 
4. Security risk profiling 
5. Index construction 
 
D. OTHERS 

• Locating tax evaders 
• Property tax analysis 
• Mining of financial and economic data bases 
• Identification of explanatory economic factors 

 
 
*Largely based on Hawley, Johnson, and Raina. (1990). Also see Qi (1996). 
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Figure 1: A neural network system with feedforward backpropagation configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adapted from Mendelsohn (June, 1991). 
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Figure 2: A fully connected, three-layered network. All three neurons in the input layer are connected to all 
three neurons in the hidden layer. All hidden layer neurons are connected to the neuron(s) in the output 
layer. Neurons in a given layer do not interconnect. 
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Figure 3: Typical processing element or neuron of a neural network. Such individual interconnected 
processing elements are the brain cells of neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A transfer function is specified in the neuron. The transfer function sums the weighted inputs 
Ii*Wi,...,In*Wn and multiplies the summed value with a new weight determined by the type of the function. 
For financial forecasting, a nonlinear, continuously differentiable transfer function is needed. The weight 
by which the neuron multiplies the sum of the weighted inputs is proportional to the derivative of the 
transfer function with respect to its total input. Typical transfer functions used are sigmoid and hyperbolic 
tangent. 
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 Adapted from Mendelsohn (September 1993) and Rumelhart et al. (1986). 
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Figure 4  

Transfer Function 

 
 
An example of a neuron using a sigmoid transfer function: 
 
 

1I  = 3   W1 = .2        

2I = 1   W2 = .4                 YT  =  .77     
       Neuron 

 = 2   W3I 3 = .1 
 
 
The summation function results in: 
 
 Y = 3(.2) + 1 (.4) + 2 (.1) = 1.2 
 
And the sigmoid transformation results in: 
 

   77.
1

1
2.1 =

+
= −e

YT  

 
0.77 is the transformed or normalized value of 1.2 
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Figure 5: Nonoverlapping forecast horizons. The errors of 55-day forecast made on January 2, 1986 will 
be uncorrelated with the errors of the next 55-day forecast (made on April 3, 1986). Similarly, the errors of 
35-day forecast made on January 30, 1986 will be uncorrelated with the errors of the next 35-day forecast 
(made on May 1, 1986). Similar is the case with 15-day forecasts. Thus, each forecast of a particular 
horizon will be uncorrelated with previous or subsequent forecasts. 
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                    Table 1 

             Correlation between S&P 500 Index futures daily settlement price changes and the daily  
           price changes of 16 futures contracts and 2 spot indexes using data from February 1984   
     to January 1994. Also shown are the relative contributions of 20 variables in forecasting volatility 
          of S&P 500 Index futures prices; last column shows contribution of 13 selected variables in 
   forecasting index futures price volatility. The relative contribution coefficients are taken after training  
     the network with 15-day forecast file. The training was with 500 days of data on the 13 variables. 

  

        Contract Correlation      Relative contribution coefficient 

  coefficient All 20 variables 13 select variables  

1 Swiss frank -0.0572 0.0439 *** 

2 Japnese yen -0.0293 0.3293 0.6539 

3 NYSE# 0.9000 0.1243 0.1455 

4 Treasury bonds 0.3164 0.0736 0.6335 

5 Treasury notes 0.2779 0.0676 *** 

6 Treasury bills 0.0595 0.3239 0.4947 

7 Silver -0.1026 0.1026 0.1609 

8 Platinum -0.0465 0.2686 0.3944 

9 Palladium -0.0488 0.7043 0.8373 

10 Heating oil -0.0682 0.3735 0.1655 

11 Copper 0.0590 0.4742 0.6173 

12 Gold -0.1220 0.0675 0.1326 

13 Euro-dollar 0.1466 0.2311 *** 

14 German mark -0.0393 0.0663 *** 

15 DJIA# 0.9384 0.0776 *** 

16 Crude oil -0.0742 0.4462 0.1513 

17 Canadian dollar 0.0054 0.3316 *** 

18 British pound -0.0368 0.0684 *** 

19 S&P 500 Index# NC 0.0655 0.2042 

20 S&P 500 Futures-L NC 0.1102 0.1617 

Notes:    
1. #: Represents spot indexes. 
2. Relative cotribution measures extent of contribution of rolling historical standard  
   deviation (HSD) series of 17 futures contracts and 3 spot indexes in forecasting  
   the realized volatility of S&P 500 Index futures prices usingdata from 1984-1989.  
   Higher the relative contribution coefficient, higher the contribution of a   
   particular variable in forecasting. Appendix 3 explains the concept.  
3. ***: Represents variables not included in network training and forecasting. 
4. L: Rolling HSDs computed from log relatives of 1-day lagged index futures prices.  
5. NC: Not calculated.   
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               Table 2  

   

     Experimental design: Dates for which forecasts are generated for the three 
forecast 
         horizons: 55, 35 and 15 days before maturity of S&P 500 Index futures 
contracts: 

  1986-1993 (30 contract classes)  

   

 Obs. Futures mat- 55 days to  35 days to  15 days to  

 urity class maturity maturity maturity 

1 Mar.-86 02-Jan-86 30-Jan-86 28-Feb-86 

2 June-86 03-Apr-86 01-May-86 30-May-86 

3 Sept.-86 02-Jul-86 31-Jul-86 28-Aug-86 

4 Dec.-86 02-Oct-86 30-Oct-86 28-Nov-86 

5 Mar.-87 31-Dec-86 29-Jan-87 27-Feb-87 

6 June-87 01-Apr-87 30-Apr-87 29-May-87 

7 Sept.-87 01-Jul-87 30-Jul-87 27-Aug-87 

8 Dec.-87 01-Oct-87 29-Oct-87 27-Nov-87 

9 Mar.-88 30-Dec-87 28-Jan-88 26-Feb-88 

10 June-88 30-Mar-88 28-Apr-88 26-May-88 

11 Sept.-88 29-Jun-88 28-Jul-88 25-Aug-88 

12 Dec.-88 29-Sep-88 27-Oct-88 25-Nov-88 

13 Mar.-89 28-Dec-88 26-Jan-89 24-Feb-89 

14 June-89 30-Mar-89 27-Apr-89 25-May-89 

15 Sept.-89 28-Jun-89 27-Jul-89 24-Aug-89 

16 Dec.-89 28-Sep-89 26-Oct-89 24-Nov-89 

17 Mar.-90 27-Dec-89 25-Jan-90 23-Feb-90 

18 June-90 28-Mar-90 26-Apr-90 24-May-90 

19 Sept.-90 05-Jul-90 02-Aug-90 30-Aug-90 

20 Dec.-90 04-Oct-90 01-Nov-90 30-Nov-90 

21 Mar.-91 26-Dec-90 24-Jan-91 22-Feb-91 

22 June-91 04-Apr-91 02-May-91 31-May-91 

23 Sept.-91 03-Jul-91 01-Aug-91 29-Aug-91 

24 Dec.-91 03-Oct-91 31-Oct-91 29-Nov-91 

25 Mar.-92 02-Jan-92 30-Jan-92 28-Feb-92 

26 June-92 01-Apr-92 30-Apr-92 29-May-92 

27 Sept.-92 01-Jul-92 30-Jul-92 27-Aug-92 

28 Dec.-92 01-Oct-92 29-Oct-92 27-Nov-92 

29 Mar.-93 30-Dec-92 28-Jan-93 26-Feb-93 

30 June-93 31-Mar-93 29-Apr-93 27-May-93 
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            Table 3  

Realized standard deviations (RSD) and forecasts from neural networks and implied standard deviation (ISD) from  
    Barone-Adesi and Whaley (BAW) model for 15-, 35- and 55-day forecast horizons. t-statistics for tests of  
differences in the means of forecasts with respect to RSDs is shown below with p-values. Neural forecasts are  
not significantly different from RSDs. ISDs are not significantly different from RSDs  only in case of 55-day forecasts. 
Mean absolute errors (MAE),root mean squared errors (RMSE) of forecasts with respect to RSDs show that 

  neural forecasts on average have lower errors compared to errors of ISDs. 
   
               15-day horizon               35-day horizon                55-day horizon 

Obs. RSD Neural ISD RSD Neural ISD RSD Neural ISD 
1 0.009198 0.011000 0.010089 0.008276 0.009000 0.009783 0.009923 0.012000 0.009783 
2 0.011406 0.012000 0.009771 0.010022 0.009000 0.011388 0.011015 0.010000 0.011388 
3 0.017427 0.016000 0.009656 0.013535 0.008000 0.010745 0.012890 0.011000 0.010745 
4 0.007874 0.010000 0.009718 0.009552 0.009000 0.010770 0.009380 0.009000 0.010770 
5 0.008228 0.009000 0.012194 0.008512 0.009000 0.012882 0.010166 0.009000 0.012882 
6 0.006964 0.011000 0.011128 0.010561 0.015000 0.014738 0.013913 0.013000 0.014738 
7 0.011139 0.010000 0.012426 0.010021 0.007000 0.009125 0.008790 0.009000 0.009125 
8 0.020287 0.012000 0.020818 0.021492 0.038000 0.032794 0.058768 0.045000 0.032794 
9 0.009187 0.016000 0.015446 0.009319 0.014000 0.019159 0.017147 0.010000 0.019159 

10 0.012025 0.013000 0.012297 0.011030 0.014000 0.014072 0.012645 0.014000 0.014072 
11 0.008707 0.013000 0.012115 0.009885 0.013000 0.012264 0.010301 0.010000 0.012264 
12 0.005930 0.009000 0.010000 0.006907 0.010000 0.011705 0.007654 0.009000 0.011705 
13 0.007648 0.009000 0.009600 0.008261 0.010000 0.009255 0.007665 0.010000 0.009255 
14 0.007428 0.004000 0.008444 0.006983 0.004000 0.008398 0.006746 0.005000 0.008398 
15 0.005255 0.016000 0.008666 0.007722 0.008000 0.009068 0.007788 0.006000 0.009068 
16 0.005393 0.013000 0.008051 0.007121 0.009000 0.014414 0.015035 0.023000 0.014414 
17 0.007268 0.009000 0.011115 0.007841 0.009000 0.013629 0.010295 0.007000 0.013629 
18 0.009851 0.009000 0.009508 0.009231 0.008000 0.010463 0.008744 0.006000 0.010463 
19 0.010864 0.011000 0.015917 0.015323 0.008000 0.011123 0.013175 0.013000 0.011123 
20 0.006910 0.011000 0.010422 0.009459 0.012000 0.016777 0.011586 0.012000 0.016777 
21 0.009506 0.008000 0.011807 0.010080 0.009000 0.012102 0.011263 0.012000 0.012102 
22 0.007055 0.008000 0.008817 0.008364 0.009000 0.009417 0.008695 0.008000 0.009417 
23 0.005553 0.006000 0.007723 0.008149 0.010000 0.008492 0.007196 0.008000 0.008492 
24 0.006697 0.008000 0.010214 0.009282 0.009000 0.008768 0.008601 0.009000 0.008768 
25 0.010568 0.006000 0.008176 0.008483 0.008000 0.009562 0.007620 0.007000 0.009562 
26 0.006152 0.005000 0.007265 0.005870 0.006000 0.008303 0.007714 0.007000 0.008303 
27 0.006132 0.006000 0.007439 0.005359 0.007000 0.007490 0.006046 0.007000 0.007490 
28 0.005089 0.006000 0.006457 0.005283 0.006000 0.008454 0.005931 0.006000 0.008454 
29 0.008717 0.006000 0.006224 0.008120 0.006000 0.006608 0.007080 0.007000 0.006608 
30 0.004788 0.003000 0.006406 0.006164 0.008000 0.007002 0.006418 0.007000 0.007002 

Mean: 0.008642 0.009533 0.010264 0.009207 0.010033 0.011625 0.011340 0.010700 0.011625 
Std: 0.003453 0.003461 0.003098 0.003162 0.005840 0.004942 0.009382 0.007349 0.004942 
t-stat.  -1.00 -1.92  -0.68 -2.26  0.29 -0.15 
p (2-tail)  (0..20) (0.00)  (0.49) (0.03)  (0.77) (0.88) 
p (1-tail)  (0.10) (0.00)  (0.25) (0.01)  (0.38) (0.44) 
MAE  0.002447 0.002598  0.002535 0.003079  0.001923 0.002379 
RMSE  0.003237 0.003114  0.003996 0.004114  0.003432 0.005113 
Mann-Whitney nonparametric test results:      
Median 0.007760 0.009000 0.009740 0.008500 0.009000 0.010600 0.009090 0.009000 0.010600 
W-stat.  823 738  912 727  949 812 
p(2-tailed)  0.18 0.01  0.97 0.01  0.62 0.13 
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