

APPLYING LINEAR ALGEBRA TO IMAGE DEBLURRING

By

John Julian Sanborn

A thesis submitted to the University Honors Program at Southern New Hampshire University to
complete HON 401, and as part of the requirements for graduation from the University Honors
Program

Manchester, New Hampshire

May 2019

Approved by:

(Faculty Mentor)

University Honors Director

John Sanborn

Dr. William Jamieson

Applying Linear Algebra to Image Deblurring

Abstract Intro

This thesis expands on the concepts taught in Applied Linear Algebra (MAT-350), using singular

value decomposition (SVD) and discrete cosine transform (DCT), with a focus on image

deblurring. The principles discussed throughout this thesis were guided by the readings of

Deblurring Images Matrices, Spectra, and Filtering by Christian Hansen, James Nagy, and

Dianne O’Leary. The thesis will focus on various techniques that were used to deblur an image,

how the SVD and DCT were applied, and the results applied to a blurred photo. The mathematics

are made easier using MATLAB’s built-in tools including: The Signal Processing Toolbox (SPT)

and the Image Processing Toolbox (IPT) as well as tools created by the authors of Deblurring

Images Matrices, Spectra, and Filtering. The goal of this project is to not only learn the

theoretical side of the mathematics behind image deblurring, but also to write code to implement

various techniques used to deblur an image.

Keywords: Singular Value Decomposition, Discrete Cosine Transform, Matrix Decomposition,

Spectral Filtering

Introduction

Consider an image that is captured by a digital camera. The image is transformed into a matrix

with integer values using mechanical sensors which inherently introduce error into the signal,

called discretization error. Human error can also be introduced to the signal if the camera

operator does not properly focus the camera or if the camera is moving while a picture is being

taken. To fix these errors, one may apply linear algebra concepts.

According to [1], a digital image consists of pixels which are assigned integer values to represent

a certain color intensity. Depending on the size and resolution of the photo, a small image may

have 65,536 pixels (2562) whereas a high-resolution image could have anywhere between 5 to 10

million pixels. Image deblurring/image restoration is the process of removing the blur within a

photo. The blurring occurs because of pixel intensities being averaged over some area. To deblur

a photo, we can use a mathematical process based on concepts of linear algebra.

Matrix

What do you see in Figure 1? Some may see a square with smaller squares of varying shades of

grey, others may see one big square depending on their vision. However, this is a matrix with

pixel intensities. As you may store this information as what you see, a large square, the computer

stores this as a matrix with a black and white intensity between 0-255. When your brain

processes the information coming from your eyes, you can see a greater variety of color

intensities than the computer stores. It’s just that the difference between the true intensity and the

one that the computer stores is so small that the human eye has trouble telling the difference

between them.

Figure 1

In order to deblur an image, we must first create a formula to represent the blurring process. The

general model for a blurred image can be given as follows: Ax + e = b. in this equation: A is a

matrix that includes the blur, x is the exact image, e is the error otherwise known as the noise,

and lastly b is the blurred photo. The lowercase notation in our formula means that x, e, and b

are all vectors, rather than uppercase which denotes a matrix. Noise can be caused by various

things including discretization, mechanical, and human error. Discretization error occurs when a

continuous variable is stored as a finite variable, whereas mechanical error comes from error of

the device capturing the image, and human error comes from the individual taking the photo.

Unfortunately, we are unable to estimate this noise, so we are unable to recover the original

image with our mathematical model. The general formula we are trying to solve for can be given

as follows: x = A-1(b-e) = A-1b – A-1e. In this case we know A-1b, but we don’t know A-1e or x.

A naïve approach is to assume that x is approximately A-1b which occurs only when the inverted

noise, A-1e, is small relative to the size of A-1b.

The following two examples use the naïve approach to attempt to deblur an image:

 Original Photo Results

Figure 2

In Figures 2 and 3, we are attempting to reconstruct the original image using the naïve approach.

However, the inverted noise (A-1e) is much larger than the reconstructed image (A-1b) and

dominates both photos. The image in Figure 2 is taken from [1].

Deblurring using a general linear model

Assuming the blur is linear, we have tools to reduce the effect of the inverted noise while

simultaneously not changing the value of A-1b very much. Two popular image deblurring

methods that will be considered in this thesis are the singular value decomposition (SVD) and

the discrete cosine transform (DCT). Both the SVD and DCT require user input to choose the

value of a parameter which determines how much the inverted noise is reduced, but there is a

trade-off. As you reduce (or dampen) the inverted noise, the more information from the exact

image is being lost.

Figure 3

Both the singular value decomposition and the discrete cosine transform decompose the image

according to the frequency of the signal. These decompositions allow us to dampen the inverted

noise in order to make the image the highest quality possible.

Before we go into the mathematics of both the singular value decomposition and the discrete

cosine transform, we must talk about the point spread function and boundary conditions.

Point Spread Functions (PSF) and Boundary Conditions

A point spread function describes the way in which the blur occurs. Although there are many

blurs including horizontal blur, atmospheric turbulence blur, and Moffat blur, we are assuming

an out-of-focus blur. An out-of-focus blur models the effect of the camera lens not being focused

properly. In Figure 4, the white area corresponds to the pixels whose values are being averaged

together in order to achieve the blur. Keep in mind that this blur is being applied every pixel in

the image, so information outside of the frame of the image is being used to blur the image.

Thus, we must explore what are called boundary conditions. Boundary conditions are the

assumptions about what information is contained outside of the frame of the exact image. To

attempt to reproduce the exact image many blurring models account for this loss of information.

The main boundary conditions are periodic, zero, and reflexive.

The image in Figure 4 is taken from [1].

Boundary Conditions

We will consider three boundary conditions: periodic, zero, and reflexive. In each of the

following examples we assume our exact image is the part of the matrix given in red and the

numbers in black is the information stored outside of the frame.

Periodic Boundary Condition

For a periodic boundary condition, we assume that the matrix repeats itself outside of the exact

image:

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑
𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔
𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑
𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔
𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟐𝟐 𝟑𝟑
𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟒𝟒 𝟓𝟓 𝟔𝟔
𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟕𝟕 𝟖𝟖 𝟗𝟗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Figure 4

Zero-Boundary Condition

For a zero-boundary condition, we assume that the pixels stored outside of our exact image are

black, which corresponds to a grayscale intensity of 0:

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Reflexive Boundary Condition

For a reflexive boundary condition, we assume that a mirror image of the exact image appears

outside of the frame:

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟗𝟗 𝟖𝟖 𝟕𝟕 𝟕𝟕 𝟖𝟖 𝟗𝟗 � 𝟖𝟖 𝟕𝟕
𝟔𝟔 𝟓𝟓 𝟒𝟒 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟔𝟔 𝟓𝟓 𝟒𝟒
𝟑𝟑 𝟐𝟐 𝟏𝟏 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟑𝟑 𝟐𝟐 𝟏𝟏
𝟑𝟑 𝟐𝟐 𝟏𝟏 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟑𝟑 𝟐𝟐 𝟏𝟏
𝟔𝟔 𝟓𝟓 𝟒𝟒 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟔𝟔 𝟓𝟓 𝟒𝟒
𝟗𝟗 𝟖𝟖 𝟕𝟕 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟗𝟗 𝟖𝟖 𝟕𝟕
𝟗𝟗 𝟖𝟖 𝟕𝟕 𝟕𝟕 𝟖𝟖 𝟗𝟗 𝟗𝟗 𝟖𝟖 𝟕𝟕
𝟔𝟔 𝟓𝟓 𝟒𝟒 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟔𝟔 𝟓𝟓 𝟒𝟒
𝟑𝟑 𝟐𝟐 𝟏𝟏 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟑𝟑 𝟐𝟐 𝟏𝟏⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

How the SVD works

The Singular Value Decomposition (SVD) is a matrix decomposition which allows us to separate

our image into a sum of images. The relationship between the size of the singular value and its

contribution to the final image is best described visually.

The image on the left is the exact image, whereas the image on the right represents the

reconstructed image with a certain number of singular values. As you can see, the larger singular

values have a lower frequency and contribute lots of information to the image, whereas the

singular values close to zero have a higher frequency and contribute very little to the overall

image. This is an important concept of this thesis since it shows us that the higher-frequency

singular values contain the granular detail, but also contribute the most to the inverted noise that

we are trying to dampen. The SVD is extremely useful since it identifies portions of the image

signal which should be dampened or eliminated in order to reduce inverted noise. In most cases,

the SVD assumes a zero-boundary condition.

SVD Background

Given a m x n matrix A, the formula for the Singular Value Decomposition can be given as

follows: 𝐀𝐀 = 𝐔𝐔 𝚺𝚺𝐕𝐕𝑻𝑻. In this model we know that 𝐔𝐔 and 𝐕𝐕 are orthogonal matrices and 𝚺𝚺 is a

diagonal matrix whose elements 𝝈𝝈𝒊𝒊 are nonnegative and appear in nonincreasing order. A is

equal to sum of rank one matrices.

A = σ1 * u1 * v1T + σ 2 * u2 * v2T +…+ σ n * un * vnT

To calculate a singular value decomposition, first compute 𝑨𝑨𝑻𝑻𝑨𝑨. The square root of the

eigenvalues of 𝑨𝑨𝑻𝑻𝑨𝑨 are the singular values of A, which are denoted by 𝝈𝝈𝒊𝒊. The columns 𝒖𝒖𝒊𝒊 of the

matrix 𝐔𝐔 are the normalized eigenvectors of 𝑨𝑨𝑻𝑻𝑨𝑨, and the columns of 𝐕𝐕 are given by 𝑨𝑨𝒖𝒖𝒊𝒊
𝝈𝝈𝒊𝒊

. An

example of computing the singular value decomposition given a matrix is as follows:

(Example taken from [2])

𝐴𝐴 = �2 −1
2 2 �

𝐴𝐴𝑇𝑇 = � 2 2
−1 2�

𝐴𝐴𝑇𝑇𝐴𝐴 = � 2 2
−1 2� �

2 −1
2 2 � = �8 2

2 5�

Compute the determinant of 𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆𝜆𝜆 = 0

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆𝜆𝜆 = 0 → � 8 − 𝜆𝜆 2
2 5 − 𝜆𝜆� = 0

𝐴𝐴𝑇𝑇𝐴𝐴– 𝜆𝜆𝜆𝜆 = (8 − 𝜆𝜆)(5 − 𝜆𝜆) − (2)(2)

40 − 13𝜆𝜆 + 𝜆𝜆2 − 4 = 0

36 − 13𝜆𝜆 + 𝜆𝜆2 = 0

𝜆𝜆1 = 9

𝜆𝜆2 = 4

𝜎𝜎1 = √9 = 3

𝜎𝜎2 = √4 = 2

𝚺𝚺 = �𝟑𝟑 𝟎𝟎
𝟎𝟎 𝟐𝟐�

𝚺𝚺−𝟏𝟏 = �

𝟏𝟏
𝟑𝟑

𝟎𝟎

𝟎𝟎
𝟏𝟏
𝟐𝟐

�

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆1𝑖𝑖 = 0 → � 8 − 9 2
2 5 − 9� = �−1 2

2 −4� ⇒
𝑥𝑥1 = 2
𝑥𝑥2 = 1

Divide by its length/ magnitude:

𝐿𝐿 = �22 + 12 = √5

𝑣𝑣1 = �

2
𝐿𝐿
1
𝐿𝐿

� =

⎣
⎢
⎢
⎡

2
√5
1
√5⎦
⎥
⎥
⎤

Compute 𝑢𝑢1 as 1
𝜎𝜎1
𝐴𝐴𝑣𝑣1

𝑢𝑢1 =
1
3
�2 −1
2 2 �

⎣
⎢
⎢
⎡

2
√5
1
√5⎦
⎥
⎥
⎤

𝑢𝑢1 =
1
3
⎣
⎢
⎢
⎡

3
√5
6
√5⎦
⎥
⎥
⎤

𝑢𝑢1 =

⎣
⎢
⎢
⎡

1
√5
2
√5⎦
⎥
⎥
⎤

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝜆𝜆2𝑖𝑖 = 0 → � 8 − 4 2
2 5 − 4� = �4 2

2 1� ⇒ 𝑥𝑥1 = −1
𝑥𝑥2 = 2

Divide by its length/ magnitude

𝐿𝐿 = �−12 + 22 = √5

𝑣𝑣2 = �

−1
𝐿𝐿
2
𝐿𝐿

� =

⎣
⎢
⎢
⎡
−1
√5
2
√5⎦

⎥
⎥
⎤

Compute 𝑢𝑢2 as 1
𝜎𝜎2
𝐴𝐴𝑣𝑣2

𝑢𝑢2 =
1
2
�2 −1
2 2 �

⎣
⎢
⎢
⎡
−1
√5
2
√5⎦

⎥
⎥
⎤

𝑢𝑢2 =
1
2
⎣
⎢
⎢
⎡
−4
√5
2
√5⎦

⎥
⎥
⎤

𝑢𝑢2 =

⎣
⎢
⎢
⎡
−2
√5
1
√5⎦

⎥
⎥
⎤

𝐔𝐔 = [𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐] =

⎣
⎢
⎢
⎡

1
√5
2
√5

−2
√5
1
√5⎦

⎥
⎥
⎤

𝐕𝐕 = [𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐] =

⎣
⎢
⎢
⎡

2
√5

−1
√5

1
√5

2
√5⎦

⎥
⎥
⎤

𝐕𝐕𝑻𝑻 =

⎣
⎢
⎢
⎡

2
√5

1
√5

−1
√5

2
√5⎦
⎥
⎥
⎤

𝐀𝐀 = 𝐔𝐔 𝚺𝚺𝐕𝐕𝑻𝑻

𝐀𝐀 =

⎣
⎢
⎢
⎡

1
√5
2
√5

−2
√5
1
√5⎦

⎥
⎥
⎤
 �𝟑𝟑 𝟎𝟎
𝟎𝟎 𝟐𝟐�

⎣
⎢
⎢
⎡

2
√5

1
√5

−1
√5

2
√5⎦
⎥
⎥
⎤

𝐀𝐀 = 3

⎣
⎢
⎢
⎡

1
√5
2
√5⎦
⎥
⎥
⎤
�

2
√5

1
√5
� + 2

⎣
⎢
⎢
⎡
−2
√5
1
√5⎦

⎥
⎥
⎤
�
−1
√5

2
√5
�

𝐀𝐀 = �

6
5

3
5

12
5

6
5

� + �

4
5

−8
5

−2
5

4
5

�

𝐀𝐀 = �2 −1
2 2 �

Multiplying out the matrix will give us the exact matrix we started with. In a matrix that has

many more singular values, the smaller singular values contribute much less to the overall image

and can be removed. By removing some of the smaller singular values, we are dampening the

inverted noise.

Moore-Penrose inverse

The calculation of the inverse of the singular value decomposition of A requires calculating the

Moore-Penrose inverse. The Moore-Penrose inverse is a pseudo-inverse which behaves similarly

to an inverse but does not have all the properties of an inverse. We will use the Moore-Penrose

inverse to approximate the deblurred image A-1b. In our case, 𝚺𝚺 is square so we do not need to

pad the matrix. The general shape of a square (n x n) 𝚺𝚺 is as follows:

�
𝜎𝜎1 0 0
0 ⋱ 0
0 0 𝜎𝜎𝑛𝑛

�

When taking the inverse of a square (n x n) 𝚺𝚺 is given as follows:

⎣
⎢
⎢
⎢
⎡

1
𝜎𝜎1

0 0

0 ⋱ 0

0 0
1
𝜎𝜎𝑛𝑛⎦
⎥
⎥
⎥
⎤

Since this matrix is square (n x n) the inverse is the real inverse, however, if the inverse were

rectangular (m x n) it would be padded with row(s) or column(s) of zeros and would be a

pseudo-inverse.

The formula for the Moore-Penrose inverse of the matrix

 𝐀𝐀 = 𝐔𝐔 𝚺𝚺𝐕𝐕𝑻𝑻 = �𝛔𝛔𝐢𝐢

𝐍𝐍

𝐢𝐢=𝟏𝟏

𝐮𝐮𝐢𝐢𝐯𝐯𝐢𝐢𝐓𝐓

is given as follows:

𝐀𝐀+ = 𝐕𝐕𝚺𝚺+𝐔𝐔𝐓𝐓 = ∑ 𝟏𝟏
𝛔𝛔𝐢𝐢

𝐍𝐍
𝐢𝐢=𝟏𝟏 𝐯𝐯𝐢𝐢𝐮𝐮𝐢𝐢𝐓𝐓.

Since our general model is given by Ax + e = b we can attempt to reduce inverted noise by

removing the singular values that make A+e large. We assume X = A+b and we ignore the error

term because we don’t know what A+e is. We hope through this process we have made the

inverted noise small. However, we are making a tradeoff of a lower error for a lower quality

reconstructed image. We can keep a higher image quality, but the noise will ultimately dominate

as seen in Figure 3, or we can sacrifice image quality for dampened noise. This can be described

by removing the higher-frequency pieces but keeping the lower-frequency pieces.

Application to Deblurring

The singular value decomposition can be applied to image deblurring as a tool to dampen the

inverted noise. As you can see in Figure 5, by applying the SVD to our image we are able to

recover much of the information that was lost in the blurring process, although we lost some of

the detail that was embedded in the portion of the signal corresponding to small singular values.

Discrete Cosine Transform Background

The Discrete Cosine Transform (DCT) is another matrix decomposition which allows us to

decompose the image into a sum of images. The DCT is useful since with the individual sum of

images we can dampen the inverted noise. The DCT is most useful when assuming a reflexive

boundary condition. The main difference between the DCT and the SVD is the computational

efficiency when computing A. However, this algorithm is only computationally efficient when

reflexive boundary conditions are used.

Definition

The Discrete Cosine Transform (DCT) is defined as:

A = CTΛC

CTΛC can be written similarly to the SVD, where A is equal to sum of rank one matrices.

A = λ1 * c1 * c1T + λ2 * c2 * c2T +…+ λn * cn * cnT

Figure 5

In this formula, matrix C is an orthogonal two-dimensional Discrete Cosine Transform matrix

(see [1]). Unlike in the singular value decomposition we only need to compute Λ which is

computationally efficient when Λ is diagonal. If blurring matrix A has reflexive boundary

conditions, Λ is diagonal, then the diagonal entries can be found using the following formula:

𝝀𝝀𝒊𝒊 =
[𝐂𝐂𝐚𝐚𝟏𝟏]𝒊𝒊
𝒄𝒄𝒊𝒊𝟏𝟏

The benefit of the DCT is that rather than needing to calculate three different matrices, like in the

SVD with U, 𝚺𝚺, and V, we only need to calculate Λ. If Λ is diagonal, the eigenvalues of Λ are

exactly the diagonal elements of the matrix. Thus, calculating the eigenvalues tells us exactly the

values of Λ. However, the point is to find the eigenvalues so that we can write the matrix A as

the sum of rank one matrices, just like in the SVD case. The eigenvalues will take the place of

the singular values. In this equation 𝐚𝐚𝟏𝟏 is the first column of A and 𝒄𝒄𝒊𝒊𝟏𝟏is an element of C, see [1].

The matrix C is determined by the size of A, and not the entries of A. The Discrete Cosine

Transform is used for the popular image compression format known as JPEG.

Example of the Discrete Cosine Transform

A = �
2 4 6
4 4 4
6 4 2

�

Notice that the matrix A is doubly reflexive, so the discrete cosine transform will be a diagonal

matrix. The 3x3 discrete cosine transform matrix is approximately equal to

C = �
0.5774 0.5774 0.5774
0.7071 0 −0.7071
0.4082 −0.8165 0.4082

�,

and

A = CTΛC = 𝑪𝑪𝑻𝑻 �
12 0 0
0 −4 0
0 0 0

� 𝑪𝑪.

We can see that the diagonal entries of Λ can be computed by first calculating

Ca1= �
0.5774 0.5774 0.5774
0.7071 0 −0.7071
0.4082 −0.8165 0.4082

� �
2
4
6
� = �

6.9282
−2.8284

0
�

and then dividing each entry by the corresponding entry of the first column of C:

𝜆𝜆1 = [Ca1]1
𝑐𝑐11

= 6.9282
0.5774

= 12, 𝜆𝜆2 = [Ca1]2
𝑐𝑐21

= −2.8284
0.7071

= −4, 𝜆𝜆3 = [Ca1]3
𝑐𝑐31

= 0
0.4082

= 0.

For even moderately sized images, the number of floating point operations necessary to calculate

the eigenvalues of Λ in this fashion is far less than the number of operations necessary to

calculate the eigenvalues using the singular value decomposition. For this reason, the discrete

cosine transform is the preferred matrix decomposition when using reflexive boundary

conditions. For other boundary conditions, the entries of Λ cannot be computed in the same way.

Application to Deblurring

The Discrete Cosine Transform can be applied to image deblurring as a tool to dampen the

inverted noise. As you can see in Figure 6 by applying the DCT to our image we are able to

recover much of the information that was lost in the blurring process. Although we lost some of

the detail that came with the inverted noise, we recovered most of the information that was lost

during the blurring process.

Spectral Filtering Introduction

Spectral filtering is a technique which reduces the contribution of small singular values (or small

eigenvalues) and leaves large singular values relatively unchanged. Small singular values are

multiplied by a value of 𝝋𝝋(𝒊𝒊) that is close to zero, whereas large singular values are multiplied

by a value of 𝝋𝝋(𝒊𝒊) that is close to one:

𝐀𝐀 = 𝐔𝐔 𝚺𝚺𝐕𝐕𝑻𝑻 = �𝝋𝝋(𝒊𝒊)𝛔𝛔𝐢𝐢

𝐍𝐍

𝐢𝐢=𝟏𝟏

𝐮𝐮𝐢𝐢𝐯𝐯𝐢𝐢𝐓𝐓

In our project we used multiple spectral filtering techniques including the Tikhonov method and

the cutoff method to reduce the inverted noise.

Tikhonov Method

𝝋𝝋(𝒊𝒊) =
𝝈𝝈𝒊𝒊𝟐𝟐

𝝈𝝈𝒊𝒊𝟐𝟐 + 𝜶𝜶𝟐𝟐

Figure 6

If 𝜶𝜶 is much greater than the singular value, then 𝝋𝝋(𝒊𝒊) is around 0. When we multiply 𝝋𝝋(𝒊𝒊) in

our SVD formula we get a value close to 0, which suppresses the inverted noise from the small

singular values.

If 𝜶𝜶 is much smaller than the singular value, then 𝝋𝝋(𝒊𝒊)is around 1. When we multiply 𝝋𝝋(𝒊𝒊) in

our SVD formula we get a value close to its original value. We aren’t changing the large singular

values because it contributes a lot to the overall photo and there is not a lot of inverted noise.

Unlike the cutoff method, we do not zero out the contribution of the smaller singular values,

rather we reduce its contribution to the overall image. To do this, we multiply its value by a

number close to, but not exactly zero.

(Truncated SVD) Singular Value or Eigenvalue Cutoff Methods

The cutoff method uses the same formula as the Tikhonov method:

𝐀𝐀 = 𝐔𝐔 𝚺𝚺𝐕𝐕𝑻𝑻 = �𝝋𝝋(𝒊𝒊)𝛔𝛔𝐢𝐢

𝐍𝐍

𝐢𝐢=𝟏𝟏

𝐮𝐮𝐢𝐢𝐯𝐯𝐢𝐢𝐓𝐓

However, instead of getting values close to 0 and close to 1, the cutoff method chooses a k value

where:

𝝋𝝋(𝒊𝒊) = �1, 𝑖𝑖𝑖𝑖 𝑖𝑖 ≤ 𝑘𝑘
0, 𝑖𝑖𝑖𝑖 𝑖𝑖 ≥ 𝑘𝑘

Unlike the Tikhonov method, the cutoff method is all or nothing and the values at a certain point

either contribute or don’t to the overall photo. A similar technique can be used on

decompositions from the discrete cosine transform.

Conclusion

As we approach digital image deblurring, we must think of a photo as a matrix of numbers

corresponding to different color intensities. The image deblurring problem can be approximated

by a linear model Ax + e = b. In this equation, A is a matrix that includes the blur, x is the exact

image, e is the error otherwise known as the noise, and lastly b is the blurred photo. We must

make an assumption about the structure of the blurring matrix A, which describes the type of

blur that is occurring. We must also make an assumption about the type of boundary conditions

that are appropriate for the image. A naïve approach to deblurring is dominated by the inverse

noise, which cannot be estimated. In this thesis, two different matrix decompositions known as

the singular value decomposition (SVD) and the discrete cosine transform (DCT) are used to

decompose the matrix A and identify portions of its spectrum that contribute most to the inverted

noise. Depending on the circumstances, one matrix decomposition might be more useful than the

other. Using spectral filtering techniques, the inverted noise A+e is suppressed. However, since

spectral filtering techniques alter the value of A+b and we cannot estimate e, it is impossible to

recover the exact image.

References

[1] P. C. Hansen, J. G. Nagy, D. P. O’Leary; Deblurring images matrices, spectra, and filtering,

SIAM, Philadelphia (2006)

[2] D. C. Lay, S. R. Lay, J. J. McDonald; Linear Algebra and its Applications FIFTH EDITION,

Pearson, London (2015)

	APPLYING LINEAR ALGEBRA TO IMAGE DEBLURRING
	By
	John Julian Sanborn
	A thesis submitted to the University Honors Program at Southern New Hampshire University to complete HON 401, and as part of the requirements for graduation from the University Honors Program
	Manchester, New Hampshire
	May 2019
	Approved by:
	(Faculty Mentor)

	University Honors Director
	John Sanborn
	Abstract Intro
	Introduction
	Matrix
	Deblurring using a general linear model
	Assuming the blur is linear, we have tools to reduce the effect of the inverted noise while simultaneously not changing the value of A-1b very much. Two popular image deblurring methods that will be considered in this thesis are the singular value dec...
	Both the singular value decomposition and the discrete cosine transform decompose the image according to the frequency of the signal. These decompositions allow us to dampen the inverted noise in order to make the image the highest quality possible.
	Before we go into the mathematics of both the singular value decomposition and the discrete cosine transform, we must talk about the point spread function and boundary conditions.
	Point Spread Functions (PSF) and Boundary Conditions
	The image in Figure 4 is taken from [1].
	Boundary Conditions
	We will consider three boundary conditions: periodic, zero, and reflexive. In each of the following examples we assume our exact image is the part of the matrix given in red and the numbers in black is the information stored outside of the frame.
	Periodic Boundary Condition
	Zero-Boundary Condition
	Reflexive Boundary Condition
	How the SVD works
	SVD Background
	Compute ,𝑢-2. as ,1-,𝜎-2..𝐴,𝑣-2.
	Moore-Penrose inverse
	,,,1-,𝜎-1..-0-0-0-⋱-0-0-0-,1-,𝜎-𝑛....
	Application to Deblurring
	Discrete Cosine Transform Background
	Definition
	A = CTΛC
	CTΛC can be written similarly to the SVD, where A is equal to sum of rank one matrices.
	Application to Deblurring
	Spectral Filtering Introduction
	Spectral filtering is a technique which reduces the contribution of small singular values (or small eigenvalues) and leaves large singular values relatively unchanged. Small singular values are multiplied by a value of 𝝋,𝒊. that is close to zero, wh...
	[1] P. C. Hansen, J. G. Nagy, D. P. O’Leary; Deblurring images matrices, spectra, and filtering, SIAM, Philadelphia (2006)

