Proof of the Uniqueness Conjecture of Visible Opposing Same Color Pairs

Conjecture: If a stacked tower of 4 cubes has a unique solution, no cube in the tower may have an opposing pair of the same color on the visible sides of the tower.

Definitions:
Valid Transformation: A transformation of a cube is considered a valid transformation if the transformation is performed by flipping or rotating a cube by a multiple of 90 degrees, defined from the cube's starting position.

Configuration: If two or more sets of valid transformations cause a cube to have an identical positional orientation, that orientation is considered a configuration of the cube.

Solution: A stack of 4 cubes is considered a solution if each side of the tower generated by stacking the 4 cubes contains 4 different colors.

Unique Solution: For a given set of 4 cubes, a solution is considered a unique solution if it is not equivalent to any other solution.

Rotational Equivalence Class: A solution is considered rotationally equivalent to another solution if it can be generated by simultaneously rotating all 4 cubes of the solution to the same degree and in the same direction. Solutions which are rotationally equivalent belong to the same rotational equivalence class.

Flip Equivalence Class: A solution is considered flip equivalent to another solution if it can by generated by flipping all 4 cubes of the tower 180 degrees in the same direction along the same axis. Solutions which are flip equivalent belong to the flip equivalence class.

Swap Equivalence Class: A solution is considered swap equivalent to another solution if it can be generated by swapping one or more cubes on one of the 4 levels of the tower with cubes on another level of the tower. Solutions which are swap equivalent belong to the swap equivalence class.

Proof:

- If a tower has a unique solution, each cube in the tower must have a unique configuration.
- Each cube configuration in a solution tower must have a necklace of four colors around the sides of the cube. (The colors on the necklace will be referred to as beads.)
- Therefore, if a tower has a unique solution, each necklace formed by the sides of a cube must be unique.
- Let n be an integer such that $1 \leq n \leq 4$. Assume that n necklaces formed by the sides of the cubes in a solution tower contain at least one pair of opposing beads of the same color separated on the necklace by 1 bead on both sides.
- Let us choose 1 of the n necklaces at random and rotate it 180 degrees.
- We can partition the results of this rotation into 2 outcomes: outcomes in which the rotation creates a new solution, and outcomes in which it does not.
- For outcomes in which a new solution is created by the rotation, the original solution is not unique.
- For outcome in which a new solution is not formed, the 2 beads which are not included in the same color opposing pair swap positions.
- We may flip the necklace such that these two beads swap back to their original position while also leaving the same color opposing pair in place.
- This flip will create a new solution. Therefore, the original solution is not unique.
- Therefore, for all outcomes of this 1 necklace, the tower will not have a unique solution.
- If there are n necklaces that contain at least one pair of same color beads opposing each other, it will always be possible to choose only one of the cubes and perform the preceding actions on the cube. Therefore, if any cube on a tower has an opposing same color pair on the visible sides of the tower's solution, that solution is not unique.
Q.E.D.

